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The output represents a tool for integrated energy management of buildings and energy 

distribution grids. It is constituted of software modules that should be used on the side of 

buildings and on the side of electricity distribution grids. Interaction of particular software 

modules on the building and on the grid side is established which enables integrated energy 

management both in near real time and on longer time scales for the purpose of demand 

response service contracting, planning and benefits assessment. 

As modularity and easy adaptation of the tool is aimed as its key feature, on the building side the 

modules are divided into three vertical levels covering three key parts of the buildings – level of 

comfort control in individual building zones, level of central heating, ventilation and air 

conditioning systems for preparation of heating/cooling media for zones, and level of major 

energy flows in the building, shortly named building microgrid level. On each of these levels the 

modules are divided horizontally into the part for variables prediction and estimation (PE) 

based on incoming measurements from the building, the part for optimal control of the level by 

using model predictive control (MPC) and the part for interfacing (I) optimal control commands 

towards the building automaton equipment in the field. 

On the grid side the modules encompass longer-term planning of grid operation and the grid 

operation itself on time windows of day-ahead and intra-day market operations. Longer-term 

planning includes determination of technical and economical conditions for engaging demand 

response services from active consumers via multi-annual software module as well as 

contracting demand response via annual software module.  Short-term operation is enabled by 

day-ahead software module which is in charge for activating contracted flexibility services from 

different customers in an optimal way for the grid and by intra-day module which is used to 

reschedule flexibility activation on hourly and sub-hourly time-scales. 

Main features of the tool are: 

 it is meant as an add-on to the existing automation systems in buildings and grids; 

 it operates building and grid elements to minimize costs, including exploitation of 

demand response opportunities; 

 it respects comfort and equipment constraints in buildings and grids; 

 it is operable in different configurations which can be selected based on projected costs 

of needed interventions and expected benefits in operation. 

 

Contribution to the project and Programme objectives (max. 1500 characters) 

The main objective of 3Smart is to provide a technological and legislative setup for cross-

spanning energy management of buildings, energy grids and major city infrastructures in the 

Danube region. The output clearly addresses the technological set-up for integrated energy 

management of buildings and grids, crucial for the coming time of energy system transition 

which necessitates that the energy system balancing comes at least in part on the side of 

consumers. It is also very important for shaping the energy regulations in the coming time, as 

elaborated next. 

The DTP major objective is to harmonize policies across different countries in the Danube region 

in crucial priority fields, one of them being also energy. The tool gives a new unique possibility 

for technically informed decisions regarding different options in energy regulations for enabling 

energy transition – from smart meters rollout to decisions on different tariff options that enable 

decarbonization of the energy sector. 
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Transnational impact (max. 1500 characters) 

The transnational approach in development and piloting of the grid-building cross-spanning 

energy management tool was important to make it relevant for the entire Danube region. The 

software modules were developed by teams in several different countries. The tool developed 

was elaborated and discussed via a sequence of transnational trainings held within first two 

years of the project execution.  

The seeds of such region-wide applicable energy management platform are „planted“ in pilots of 

5 different countries. Intensive transnational interactions are also enabled via pilot study visits 

where the tool application on the pilot sites was reviewed and discussed. The engaged local 

target groups will enable faster convergence of national energy regulatory setups with steeper 

learning curves building on a broader experience. 

Contribution to EUSDR actions and/or targets (max. 1500 characters) 

The output contributes to Priority Area 2 "To encourage more sustainable energy" of the EUSDR within which the following actions are required: „To explore the possibility to have an increased 

energy production originating from local renewable energy sources to increase the energy autonomy”, „To promote energy efficiency and use of renewable energy in buildings and heating systems“, „To facilitate networking and cooperation between national authorities in order to promote awareness and increase the use of renewable energies“.  
The developed cross-spanning energy management tool not just increases energy efficiency and 

combines it optimally with renewable energy measures, but also unlocks demand response 

capacities of buildings as largest consumers of energy. It is very important for enabling higher 

renewable energy integration since the energy system regulation needs to be brought at least in 

part on the side of consumers within the process of energy system decarbonization. 

Performed testing, if applicable (max. 1000 characters) 

The tool is tested within 5 pilots in 5 different countries of the Danube region: Croatia, Slovenia, 

Austria, Bosnia and Herzegovina, Hungary. It shows very promising results on pilots, and yet 

considerable testing will be performed in the remaining part of the project. 

Integration and use of the output by the target group (max. 2000 characters) 

The selected target groups for this output are national regulatory agencies who will be able to 

yield technically informed regulatory decisions by utilizing the tool, SMEs who will be in a 

position to develop businesses on application of tools to buildings and grids, higher education 

and research who will be able to provide expert services in tool further development and 

adaptations to various pilot sites together with SMEs. 

Geographical coverage and transferability (max. 1500 characters) 
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The tool is already now started to be piloted in 5 different 3Smart pilots, within 5 different 

countries, there are no specific geographical constraints for its usage. It is transferrable to other 

buildings and grids by using the performed pilots as seeds, but requires expert knowledge for 

adaptation to a particular pilot site, which actually represents an opportunity for  research-

based SMEs, enterprises and higher education and research institutions. 

Durability (max. 1500 characters) 

There is no specific constraint in time duration of output validity. Moreover, it seems that with 

the coming decarbonization of the energy system this output will only gain on its importance 

and significance. 

Synergies with other projects/ initiatives and / or alignment with current EU policies/ 

directives/ regulations, if applicable (max. 1500 characters) 

The 3Smart tool has already become a starting point for new developments in several projects 

like the project PC-ATE Buildings (Development of system for predictive control and 

autonomous trading of energy in buildings) led by company Klimaoprema and partnered by 

UNIZGFER, funded by ERDF funds in Croatia or like Store4HUC (Integration and smart 

management of energy storages at historical urban sites) funded by Interreg Central Europe in 

which UNIZGFER participates as partner. 

The tool is very relevant for transposition of EU directive Clean Energy for all Europeans into 

national policies as it enables to perform technically informed regulatory decisions within the 

directive adoption process.  

Output integration in the current political/ economic/ social/ technological/ 

environmental/ legal/ regulatory framework (max. 2000 characters) 

The tool should become a backbone for the future technology streamline for demand response 

services provision, as a key instrument for energy system decarbonization.  
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Executive summary 

Integrated energy management of buildings and grids installed with the 3Smart project is on the side 

of buildings divided into three vertical levels – zone level, central HVAC system level and microgrid 

level. In each of these levels the energy management algorithms are classified into three parts – (i) 

prediction and estimation, (ii) model predictive control, and (iii) equipment interfacing – and the 

algorithms are implemented via a sequence of submodules. 

The submodules are designed, commissioned and tested on different pilot buildings in the Danube 

region. 

Within this deliverable the focus is put on zone level prediction and estimation submodules.  

Each submodule is presented via an interfacing table that explains what data are used by the 

submodules as inputs and what are the final output data. The algorithms behind are in more detail 

explained in the annexed document. 
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1 Introduction 

Within the 3Smart project the following estimation and prediction submodules are designed, 

commissioned and tested on the zone level: 

Z.PE.1 – submodule for estimation of a thermodynamic and hydraulic model of a fan coil in off-line 

operation mode and for estimation of heat input from the fan coil to the zone air in on-line operation 

mode (tested in UNIZGFER, HEP, STREM school, EPHZHB and EON pilot buildings within 3Smart);  

Z.PE.2 -- submodule for estimation of a thermodynamic and hydraulic model of a radiator in off-line 

operation mode and for estimation of heat input from the radiator to the zone air in on-line 

operation mode (tested in HEP, IDRIJA school and sports centre and STREM school pilot buildings 

within 3Smart); 

Z.PE.3 -- submodule for estimation of a thermodynamic and hydraulic model of a zone floor 

heating/cooling unit in off-line operation mode and for estimation of heat input from the floor 

heating/cooling unit to the zone air in on-line operation mode (tested in STREM retirement and care 

centre pilot building within 3Smart); 

Z.PE.4 – submodule for estimation of a simplified room thermodynamic model, used only in off-line 

operation (tested in UNIZGFER, HEP, IDRIJA school and sports centre buildings, STREM school, STREM 

retirement and care centre, EPHZHB and EON pilot buildings within 3Smart); 

Z.PE.5 – submodule for estimation of heat disturbances and simplified zone model states, used only 

in on-line operation (tested in UNIZGFER, HEP, IDRIJA school and sports centre buildings, STREM 

school, STREM retirement and care centre, EPHZHB and EON pilot buildings within 3Smart); 

Z.PE.6 – submodule for estimation of a prediction model for heat disturbance in a zone in off-line 

operation and for prediction of heat disturbance evolution in on-line operation (tested in UNIZGFER, 

HEP, IDRIJA school and sports centre buildings, STREM school, STREM retirement and care centre, 

EPHZHB and EON pilot buildings within 3Smart); 

Z.PE.7 – submodule for prediction of comfort requirements in a zone, used only in on-line operation 

(tested in UNIZGFER, HEP, IDRIJA school and sports centre buildings, STREM school, STREM 

retirement and care centre, EPHZHB and EON pilot buildings within 3Smart); 

Z.PE.8 – submodule for estimation of a prediction model for zone heating/cooling energy 

consumption in off-line operation and for prediction of zone heating/cooling energy consumption in 

on-line operation (tested in EON pilot building within 3Smart); 

Z.PE.9 – submodule for estimation of a prediction model for zone temperature in off-line operation 

and for prediction of zone temperature in on-line operation (tested in EON pilot building within 

3Smart). 

In the following chapters the mentioned submodules are presented with their interface tables 

showing which data they use as inputs and which data they provide as outputs to be at the disposal 

to other submodules. Detailed explanations of algorithms behind each of the submodules are 
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provided in the previously delivered 3Smart document D4.4.1 (related to prediction and estimation). 

For completeness, D4.4.1 prediction and estimation part is annexed (Annex 1). 

Source and sink for the data used by submodules is a properly structured 3Smart database. Its 

structure in the part concerned by the zone level prediction and estimation submodules is provided 

in Annex 2. 

2 Z.PE.1 submodule 

Z.PE.1 submodule is used for estimation of a thermodynamic and hydraulic model of a fan coil in off-

line operation mode and for estimation of heat input from the fan coil to the zone air in on-line 

operation mode. Within 3Smart it is tested in UNIZGFER, HEP, STREM school, EPHZHB and EON pilot 

buildings. 

The submodule interface is defined in Table 2.1 and Table 2.2.  

Table 2.1: Required inputs for the Z.PE.1 submodule. 

Variable name Notation Description 

Historical temperature profile from zone 

(minute-scale of the sampling time) 
𝑇 

Data taken from the database 

Historical profile of fan actuation in the 

zone (minute-scale of the sampling time) 
FS 

Data taken from the database 

Historical temperature profile of the 

supply medium from a calorimeter 

(minute-scale of the sampling time) 

𝑇supply,cal  Data taken from the database  

Historical temperature profile of the 

return medium from a calorimeter 

(minute-scale of the sampling time) 

𝑇return,cal  Data taken from the database 

Historical profile of the flow from a 

calorimeter (minute-scale of the sampling 

time) 

𝑄cal 

Data taken from the database 

Historical profile of energy (power) 

recorded on the calorimeter (minute-

scale of the sampling time) 

𝐸cal (𝑃cal)  

Data taken from the database 

Historical temperature profile from the 

return medium temperature sensor on a 

fan coil (minute-scale of the sampling 

time) 

𝑇return,fc 

Data taken from the database 

Historical temperature profile from the 

supply medium temperature sensor on a 

fan coil (minute-scale of the sampling 

time) 𝑇supply_fc 

(optional) If not existing, 

measurement of the temperature on 

the calorimeter should be used, and 

additionally a characteristic of the 

temperature drop along the pipeline 

from the heat loss model should be 

used 
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Table 2.2: Outputs of the Z.PE.1 submodule. 

Variable name Notation Description 

Flow shares between fan coils on the 

same supply line measured by 

calorimeters (off-line) 

𝜂 

Required to be able to calculate 

heating/cooling medium flow 

through the individual fan coil unit 

Parameters of the fan coil model that 

relates fan coil actuation, room 

temperature and medium conditions 

registered on a calorimeter to fan coil 

energy transmitted to room air in a 

defined time period; also parameters of a 

simple relation between heating energy 

and electrical energy for fans for different 

supply medium flows and temperatures   

𝐴fc(𝑄w), 𝐵fc(𝑄w), 𝐶fc(𝑄w), 𝐷fc(𝑄w) 

Parameters needed for calculation of 

maximum energy for the MPC 

module (Z.MPC.1), for the interface 

submodule functioning (Z.I.1), and 

for calculation of energy inputs for 

identification of a simplified building 

dynamic model and for on-line 

estimation of its states and 

disturbances; electricity 

consumption model needed on the 

first higher level MPC modules 

Estimated heating or cooling energy 

provided to the zone air (on-line, minute-

level of the sampling time) 

𝑃𝑎𝑒 

 

 

 

 

3 Z.PE.2 submodule 

Z.PE.2 submodule is used for estimation of a thermodynamic and hydraulic model of a radiator in off-

line operation mode and for estimation of heat input from the radiator to the zone air in on-line 

operation mode. Within 3Smart it is tested in UNIZGFER, IDRIJA school and sports centre and STREM 

school pilot buildings. 

The submodule interface is defined in Table 3.1 and Table 3.2. 

Table 3.1. Required inputs for radiator identification submodule. 

Variable name Notation Description 

Historical temperature profile from zone 

(minute-scale of the sampling time) 

𝑇𝑧 

 

Data taken from the database 

Historical profile of valve actuation in the 

zone (minute-scale of the sampling time)  
𝑉𝑥  

Data taken from the database 

Historical temperature profile of the 

supply medium from a calorimeter 

(minute-scale of the sampling time) 

𝑇𝑤𝑐𝑎𝑙
 

Data taken from the database  

Historical temperature profile of the 

return medium from a calorimeter 

(minute-scale of the sampling time) 

𝑇return,cal  Data taken from the database (might 

not be needed, but will be available) 

Historical profile of the flow from a 

calorimeter (minute-scale of the sampling 
𝑞cal 

Data taken from the database 
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time) 

Historical profile of energy (power) 

recorded on the calorimeter (minute-

scale of the sampling time) 

𝐸cal (𝑃cal)  

Data taken from the database 

Historical temperature profile from the 

return medium temperature sensor on a 

fan coil (minute-scale of the sampling 

time) 

𝑇w𝑜𝑢𝑡 

Data taken from the database 

Historical temperature profile from the 

supply medium temperature sensor on a 

fan coil (minute-scale of the sampling 

time) 𝑇w𝑖𝑛 

(optional) If not existing, 

measurement of the temperature on 

the calorimeter should be used, and 

additionally a characteristic of the 

temperature drop along the pipeline 

from the heat loss model should be 

used 
 

 

Table 3.2. Outputs of the radiators identification submodule. 

Variable name Notation Description 

Return medium sensors calibration 

parameters 
 

 

Parameters of the radiator model (for off-

line operation) 

 

𝑎, 𝑏, 𝐶, 𝑈0, 𝑛 

 

Parameters needed for calculation of 

maximum energy for the MPC 

module, for the interface submodule 

functioning, and for calculation of 

energy inputs for identification of a 

simplified building dynamic model 

and for on-line estimation of its 

states and disturbances  

 

Heating input from the radiator to the 

zone air in on-line operation (for on-line 

operation) 

Erad 

 

 

 

 

 

4 Z.PE.3 submodule 

Z.PE.3 submodule is used for estimation of a thermodynamic and hydraulic model of a zone floor 

heating/cooling unit in off-line operation mode and for estimation of heat input from the floor 

heating/cooling unit to the zone air in on-line operation mode. Within 3Smart it is tested in STREM 

retirement and care centre pilot building. 
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The submodule interface is defined in Table 4.1 and Table 4.2. 

Table 4.1. Required inputs for floor heating identification submodule. 

Variable name Notation Description 

Historical temperature profile from zone 

(minute-scale of the sampling time) 

𝑇𝑧 

 

Data taken from the database 

Historical profile of valve actuation in the 

zone (minute-scale of the sampling time)  
𝑉𝑥  

Data taken from the database 

Historical temperature profile of the 

supply medium from a calorimeter 

(minute-scale of the sampling time) 

𝑇w𝑐𝑎𝑙
 

Data taken from the database  

Historical temperature profile of the 

return medium from a calorimeter 

(minute-scale of the sampling time) 

𝑇return,cal  Data taken from the database (might 

not be needed, but will be available) 

Historical profile of the flow from a 

calorimeter (minute-scale of the sampling 

time) 

𝑄cal 

Data taken from the database 

Historical profile of energy (power) 

recorded on the calorimeter (minute-

scale of the sampling time) 

𝐸cal (𝑃cal)  

Data taken from the database 

Historical temperature profile from the 

return medium temperature sensor on a 

floor heating system (minute-scale of the 

sampling time) 

𝑇w𝑜𝑢𝑡 

Data taken from the database 

Historical temperature profile from the 

supply medium temperature sensor on a 

floor heating system (minute-scale of the 

sampling time) 𝑇w𝑖𝑛 

(optional) If not existing, 

measurement of the temperature on 

the calorimeter should be used, and 

additionally a characteristic of the 

temperature drop along the pipeline 

from the heat loss model should be 

used 
 

Table 4.2. Outputs of the floor heating identification submodule. 

Variable name Notation Description 

Return medium sensors calibration 

parameters  

 

Parameters of the floor heating/cooling 

element model  

 

𝐴fh, 𝐵fh, 𝐶fh, 𝐷fh 

Parameters needed for calculation of 

maximum energy for the MPC 

module, for the interface submodule 

functioning, and for calculation of 

energy inputs for identification of a 

simplified building dynamic model  

Heating/cooling energy input from the 

element to the zone air  
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5 Z.PE.5 submodule 

Z.PE.5 is a submodule used for estimation of heat disturbances and simplified zone model states, and 

it is used only in on-line operation. Within 3Smart it is tested in all 8 pilot buildings, i.e. in UNIZGFER, 

HEP, IDRIJA school and sports centre buildings, STREM school, STREM retirement and care centre, 

EPHZHB and EON pilot building. 

The submodule interface is defined in the following tables (Table 5.1, Table 5.2). 

Table 5.1: Required inputs for the submodule for identification of simplified building thermodynamic model 

Variable name Variable annotation Variable description 

Parameters of the simplified 

building thermal dynamics model 

𝐴𝑟𝑜𝑜𝑚, 𝐵𝑟𝑜𝑜𝑚 , 𝐶𝑟𝑜𝑜𝑚, 𝐷𝑟𝑜𝑜𝑚 

Model identified with the 

procedure from above 

Temperature measurement in 

rooms/zones of the building 

(minute-scale of the sampling 

time) 

𝑇 

Current temperature 

measurement in room/zone 

Outdoor temperature (minute-

scale of the sampling time) 
𝑇o 

Current outdoor temperature 

measurement 

Solar irradiance estimation on all 

relevant building surfaces 

(minute-scale of the sampling 

time)  

𝐼solar 

 

Current amount of the solar 

radiation on different surfaces 

of the building (estimated from 

local measurements) 

Energy inputs from 

heating/cooling elements in 

zones (minute-scale of the 

sampling time) 

𝐸T 

(noted herein as 𝐸t) 

Current amount of the energy 

input from the heating/cooling 

elements in zones calculated 

based on the heating/cooling 

element model 

 

Table 5.2: Outputs of the submodule for identification of simplified building thermodynamic model 

Variable name Variable annotation Variable description 

Estimated states of the simplified 

building thermal dynamics model 

𝑥0 

 

(noted herein as [𝑇1(0)𝑇2(0)]) 

 

States needed for the MPC 

module on the zone level 

Estimated heat disturbance in zone 𝐸0D 

 

(noted herein as 𝐸d(0)) 

Current disturbances needed 

for the MPC module, for the 

interface submodule, and also 

for disturbance prediction 

 

 

6 Z.PE.6 submodule 

Z.PE.6 is a submodule for estimation of a prediction model for heat disturbance in a zone in off-line 

operation and for prediction of heat disturbance evolution in on-line operation. It is tested in all 8 

pilot buildings within 3Smart. 
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The module input and output data are provided within the following tables. 

Table 6.1: Required inputs for heat disturbance prediction submodule. 

Variable name Variable annotation Variable description 

Estimated heat disturbance in 

zone 
𝐸d 

Profile of the estimated heat 

disturbance in the past needed 

for off-line model tuning; 

recent values needed for on-

line execution 

Weather measurements 

UNIZG-FER pilot site: 𝑇env, 𝐼𝑑𝑖𝑓𝑓ℎ , 𝐼𝑑𝑖𝑟n  

Remaining pilot sites: 𝑇env, 𝐼gloℎ , 𝐼glot  

Measured weather variables:  

temperature, diffuse 

horizontal and direct normal 

irradiance (UNIZG-FER site),  

global horizontal and tilted 

global irradiance (remaining 

sites). 

Weather predictions (𝑇env)N, (𝐼dirn )N, (𝐼diffh )N 

Forecasted weather variables 

(temperature, direct normal 

and diffuse horizontal 

irradiance). 

Time indicators 𝜏 

Variables representing time of 

the day, time of the week and 

day of the year. Calculated 

from current and historical 

datetimes. 

 

Table 6.2: Outputs of the heat disturbance prediction submodule. 

Variable name Variable annotation Variable description 

Prediction model parameters 

(for off-line operation of the 

submodule) 

𝜃𝑑  
Needed for on-line operation 

of the submodule. 

Predicted heat disturbance 

evolution per zone (for on-line 

operation of the submodule) 

(𝐸d)N 
Needed for the MPC module 

on the zones level. 
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7 Z.PE.7 submodule 

Z.PE.7 is a submodule for prediction of comfort requirements in a zone, and it is used only in on-line 

operation. Within 3Smart it is tested in all 8 pilot buildings. 

The interface for this module is provided within the following tables. 

Table 7.1: Required inputs for comfort setpoint prediction submodule. 

Variable name Variable annotation Variable description 

Comfort setpoint in the zone SP 

Profile of the comfort 

setpoints selected in the past 

needed for off-line model 

tuning; recent values needed 

for on-line operation 

Zone control mode CM 

Integer showing which 

operation mode of the 

heating/cooling system is 

selected in the zone (off, auto, 

fixed fan speed/valve 

openness). 

Building HVAC system 

operation schedule 
SC 

Data showing when is the 

HVAC system for 

heating/cooling turned on/off. 

Possible extension: 

Connection with the company 

business data. 

 

Connection point between the 

EMS and the business 

information system of a 

company (travel orders, 

vacations, sick leaves, different 

known occupancy schedules 

for meetings/lectures...) 

 

Table 7.2: Outputs of the comfort setpoint prediction submodule. 

Variable name Variable annotation Variable description 

Prediction model parameters 

(for off-line operation of the 

submodule) 

𝜃𝑆𝑃  
Needed for on-line operation 

of the submodule. 

Predicted comfort setpoint 

evolution per zone (for on-line 

operation of the submodule) 

(SP)N 
Needed for the MPC module 

on the zones level. 
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8 Z.PE.8 submodule 

Z.PE.8 is a submodule for estimation of a prediction model for zone heating/cooling energy 

consumption in off-line operation and for prediction of zone heating/cooling energy consumption in 

on-line operation. Within 3Smart it is tested in EON pilot building. 

The module interface is provided in the following tables. 

Table 8.1: Required inputs for thermal energy consumption prediction submodule. 

Variable name Variable annotation Variable description 

Thermal energy consumption 

in zone 
𝐸𝑡 

Profile of the thermal energy 

consumption in zone needed 

for off-line model tuning; 

recent estimates of the 

thermal energy consumption 

needed for on-line operation 

Weather measurements 𝑇env, 𝐼gloℎ , 𝐼glot  

Measured weather variables:  

temperature, global horizontal 

and tilted global irradiance. 

Weather predictions (𝑇env)N, (𝐼dirn )N, (𝐼diffh )N 

Forecasted weather variables 

(temperature, direct normal 

and diffuse horizontal 

irradiance). 

Time indicators 𝜏 

Variables representing time of 

the day, time of the week and 

day of the year. Calculated 

from current and historical 

datetimes. 

 

Table 8.2: Outputs of the thermal energy consumption prediction submodule. 

Variable name Variable annotation Variable description 

Prediction model parameters 

(for off-line operation of the 

submodule) 

𝜃𝑒𝑡 
Needed for on-line operation 

of the submodule. 

Predicted thermal energy 

consumption evolution per 

zone (for on-line operation of 

the submodule) 

(𝐸𝑡)𝑁 
Needed for the MPC module 

on the zones level. 

  



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 – Final building-side energy management software module – estimation and prediction, zone level 
 

 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  13 
 

9 Z.PE.9 submodule 

Z.PE.9 is a submodule for estimation of a prediction model for zone temperature in off-line operation 

and for prediction of zone temperature in on-line operation. Within 3Smart it is tested in EON pilot 

building. 

The module interface is provided in the following tables. 

Table 9.1: Required inputs for zone temperature prediction submodule. 

Variable name Variable annotation Variable description 

Temperature in zone 𝑇𝑧 

Profile of the temperature in 

zone needed for off-line model 

tuning; recent measurements 

of zone temperature needed 

for on-line operation 

Weather measurements 𝑇env, 𝐼gloℎ , 𝐼glot  

Measured weather variables:  

temperature, global horizontal 

and tilted global irradiance. 

Weather predictions (𝑇env)N, (𝐼dirn )N, (𝐼diffh )N 

Forecasted weather variables 

(temperature, direct normal 

and diffuse horizontal 

irradiance). 

Time indicators 𝜏 

Variables representing time of 

the day, time of the week and 

day of the year. Calculated 

from current and historical 

datetimes. 

 

Table 9.2: Outputs of the zone temperature prediction submodule. 

Variable name Variable annotation Variable description 

Prediction model parameters 

(for off-line operation of the 

submodule) 

𝜃𝑡𝑧  
Needed for on-line operation 

of the submodule. 

Predicted temperature 

evolution per zone (for on-line 

operation of the submodule) 

(𝑇𝑧)𝑁 
Needed for the MPC module 

on the zones level. 
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Annex 1 – Open software module for zone consumption 

management – Estimation and prediction submodules 

Annex 1 is provided as a separate document. 
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Annex 2 – 3Smart database organization for open software module 

for zone consumption management – Estimation and prediction 

submodules 

Z.PE.1 

 

Z.PE.6.  
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Input data database structure: 

 

Figure 1. Current and historical estimated heat disturbance zone data database structure. 

 

Figure 2. Weather measurements data database structure. 
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Figure 3. Weather forecast data database structure. 

Output data database structure: 

 

Figure 4. Current and historical zone heat disturbance prediction data database tables. 
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Z.PE.7.  

Input data database structure: 

 

Figure 5. Current and historical zone setpoint and current opreation mode (local_switch variable) data database structure. 

 

Figure 6. HVAC system operation schedule data database structure. 

Output data database structure: 

 

Figure 7. Current and historical zone setpoint prediction data database tables. 
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Z.PE.8.  

Input data database structure: 

 

Figure 8. Current and historical zone thermal energy consumption data database structure. 

 

Figure 9. Weather measurements data database structure. 
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Figure 10. Weather forecast data database structure. 

Output data database structure: 

 

Figure 11. Current and historical zone thermal energy consumption prediction data database tables. 
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Z.PE.9.  

Input data database structure: 

 

Figure 12. Current and historical zone temperature data database structure. 

 

Figure 13. Weather measurements data database structure. 
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Figure 14. Weather forecast data database structure. 

Output data database structure: 

 

Figure 15. Current and historical zone temperature prediction data database tables. 
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Executive summary 

This document represents an annex to D4.5.3 zone prediction and estimation modules which 

describes the logic behind each of the modules. It is organized as follows.  

In Chapter 1 the interface of the submodule for identification of simplified building 

thermodynamic model is presented.  

In Chapter 2 general methodology for on-line estimation of heat disturbance flux is 

described. 

 Chapter 3 gives a comprehensive report on the identification procedure for the development 

of thermohydraulic FCU model. The developed models are tested on a real data collected from the 

Faculty’s living lab.  The proposed identification procedures stand out due to their simplicity, cost-

effectiveness (minimal sensor configuration), noninvasiveness and amount of time it takes to identify 

the models. The validated models can subsequently be used to predict the real FCU behaviour, as a 

crucial part of a synthesis of an MPC based controller for zone temperature control, to predict the 

electrical or thermal loads or as a part of an advanced diagnosis and fault detection algorithms.  

In Chapter 4 detailed analysis of radiator thermodynamic behaviour is given with developed 

procedure for identification of an on-site radiator tested on simulations.  

Chapter 5 describes the thermodynamic behaviour of floor heating and cooling systems and 

gives a procedure for identification of the real system tested on data from verified building 

simulation program IDA – Indoor climate and energy.  

In Chapter 6 submodule for prediction of heat disturbance profile in a building zone is 

presented through implementation of artificial neural networks. 

Chapter 7 outlines the submodule for comfort setpoint prediction in zones. 

Chapters 8 and 9 outline submodules that use neural networks for predicting zone energy 

demands and temperatures. 

 

 

 

 

 

 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 Annex 1 – Zone prediction and estimation 
 

 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  5 
 

1 Submodule for identification of a simplified building 

thermodynamic model (Z.PE.4) 

Mathematical model of a building is a basis for the implementation of Model Predictive Control 

algorithm for zone temperature control. Numerous software packages specialized for modelling of 

the building thermal behaviour exist on the market [13]. Although those programs can provide very 

accurate models, they are usually also highly nonlinear and of a high order. The most popular 

building modelling framework consists of using the resistance-capacitance (RC) network to model 

thermodynamic processes in buildings. The RC network models are established as simple, 

computationally efficient and accurate. The problem of RC representation is a fast increase in the 

model complexity with an increase of building zones. To be applicable for the control system design 

generally, the model of the process should be simple and yet accurate enough. Besides modelling 

based on first principles, building model can be found by using the advanced estimation techniques.  

Depending on the assumed model structure and numbers of unknowns, models to be 

estimated can be classified as i) white-box models based on first principles ii) black-box models 

where both structure and parameters are unknown or iii) grey-box models where only model 

structure is known based on first principles or some other priory knowledge. Models based on first 

principles, so called white-box models, have the strongest physical basis at the expense of high order 

and often nonlinearity. Additionally, information for development of such models are often 

unavailable or hardly measurable. Black-box models typically require long period of an operational 

data for learning which are often unavailable or require a long period of data collecting before the 

implementation of the algorithm. Grey-box models (or often referred to as semi-physical models) 

encompass the advantages of both white and black-box models. Benefits of grey-box models as 

opposed to black-box models are in the fact that priory information and physical knowledge can be 

incorporated directly. This typically results with fewer parameters, which are, due to their physicality, 

valid over wider ranges of operation. As opposed to white-box models grey-box models tend to give 

more reproducible results and less bias [14].  

Unscented Kalman Filter (UKF) is an algorithm that uses a series of noisy and inaccurate 

measurements observed over time to estimate unknown system states, parameters or even both [1] 

[5]. The main premise behind the UKF is that it is easier to approximate a Gaussian distribution than 

an arbitrary nonlinear function. Use of UKF for estimation of building models was already reported in 

[3][4]. In [3] UKF is used to simultaneously estimate states and parameters of the parameter-

adaptive building model of a single zone placed in Michigan. While the model was built on first 

principles some parameters of the model such as thermal resistance adopted negative values which 

is not physically possible. Motivated by this, the constraints are introduced into building estimation 

problem to improve the performance of the estimation, reduce the hyperspace of possible 

parameters, assure physicality  and improve the filter convergence [7][8][9][10]. 

The submodule interface is defined in the following tables (Table 1.1, Table 1.2).  In the 

following subsections an overview of the methodology used to develop the submodule is given. The 

UKF estimation principle with detailed descriptions of the Interval Constrained Unscented 

Transformation and general problem of the simultaneous states and parameters estimation is 
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described. Afterwards, the model form selection is justified and test results of the application of the 

developed algorithms are given.   

Table 1.1: Required inputs for the submodule for identification of simplified building thermodynamic model 

Variable name Variable annotation Variable description 

Historical temperature profile 

measurement in rooms/zones of 

the building (minute-scale of the 

sampling time) 

𝑇 

(noted herein as 𝑇1) 

Data from the database 

Outdoor temperature profile 

measurement (minute-scale of the 

sampling time) 

𝑇o  Data from the database 

Solar irradiance estimation on all 

relevant building surfaces (minute-

scale of the sampling time)  

𝐼solar 
(noted herein as 𝐼𝑑𝑖𝑓 , 𝐼𝑑𝑖𝑟) 

Data from the data base 

Historical profile of energy inputs 

from heating/cooling elements in 

zones (minute-scale of the 

sampling time) 

𝐸T 

(noted herein as 𝐸t) 

Stored in the database or 

calculated based on the 

heating/cooling element 

model 

 

Table 1.2: Outputs of the submodule for identification of simplified building thermodynamic model 

Variable name Variable annotation Variable description 

Parameters of the simplified 

building thermodynamic model 𝐴𝑟𝑜𝑜𝑚, 𝐵𝑟𝑜𝑜𝑚 ,  𝐶𝑟𝑜𝑜𝑚, 𝐷𝑟𝑜𝑜𝑚 

Model to be used for zone-

level MPC, states estimation of 

the simplified model, as well as 

the estimation of 

heating/cooling disturbances 
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1.1 Unscented Kalman Filter 

Kalman filter is an algorithm that uses a series of noisy and inaccurate measurements 

observed over time to estimate unknown system states, parameters or both. Early development of 

the Kalman filter dates to the early sixties. One of the primary developers of the Kalman filter theory 

was Rudolf E. Kalman by whom the filter is named [11]. Since then Kalman filter has found its place in 

many applications: guidance, robotics, control, signal processing, etc. With years many extensions 

and generalizations of the Kalman filter have been developed to adjust the filter to the specific 

systems. The most known extensions of the Kalman filter which can be applied to nonlinear systems 

are Extended Kalman Filter (EKF) and UKF. Although both mentioned filters are suitable for nonlinear 

systems, it has been shown that UKF outperforms EKF in most applications. The basic idea of the EKF 

is first order linearization of the nonlinear function and the Kalman filtering of the linearized system. 

To implement the EKF algorithm first constraint is differentiability of the system functions. Also, 

calculation of the Jacobian matrices may be difficult for higher order systems. Furthermore, linear 

approximation may not be appropriate for some systems which can result with corrupted mean and 

covariance of the states and at the end divergence of the algorithm. The UKF, which is derivative-

free, successfully overcomes the disadvantages of the EKF by using a deterministic sampling 

approach.  

The UKF belongs to a bigger class of filters called Sigma-Point Kalman Filters. Instead of 

analytical linearization of the nonlinear functions UKF uses a deterministic sampling approach to 

capture mean and covariance of the estimates with a minimal set of sample points. Since the spread 

of the variables is also considered, UKF can be accurate up to the second order in estimating mean 

and covariance. Consider the nonlinear system represented with the following standard discrete-

time equations: 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1)  +  𝑤𝑘−1, (1-1) 𝑦𝑘 = ℎ(𝑥𝑘)  +  𝑣𝑘, (1-2) 

where 𝑥𝑘 ∈ ℝnx    is the system state, 𝑤 ∈ ℝnw  the process noise, 𝑣 ∈ ℝn𝑣  observation noise, 𝑢 ∈ ℝnu  the system input vector and 𝑦 the noisy observation of the system. The nonlinear functions 𝑓(. ) and ℎ(. ) are not necessarily differentiable. For the identification of a continuous time system 𝑓(. ) represents integration of the continuous time function over a unit-sample time interval.  For the 

case of simultaneous estimation of parameters and states, unknown parameters are treated as 

additional states. Even for the linear model case, simultaneous states and parameters estimation 

makes the resulting identification nonlinear, i.e. performed on a nonlinear state-update model. 

For system and measurement noises considered as additive, the UKF algorithm basically 

consists of the following steps: 

• Initialization at 𝒌 = 𝟎  

 The initial state 𝑥0  is a random vector with known mean  𝑥0 = 𝐸[𝑥0]  and 

covariance: 

 

 

 𝑃0 = 𝐸[(𝑥0 − 𝑥0)(𝑥0 − 𝑥0)𝑇]. (1-3) 
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• For 𝒌 = 𝟏, 𝟐, 𝟑, …  

(1) Prediction and time update  

 Let 𝜒𝑘−1𝑎  be a set of 2𝑁 +  1  sigma points (where 𝑁 =  𝑛𝑥) defined as: 

 

 

 𝜒𝑖,𝑘−1𝑎 = { 𝑥𝑘−1 𝑖 = 0𝑥𝑘−1 + 𝛾 √𝑃𝑥𝑘−1 𝑖 = 1, . . . , 𝑁𝑥𝑘−1 − 𝛾 √𝑃𝑥𝑘−1 𝑖 = 𝑁 + 1, . . . ,2𝑁, 

 

(1-4) 

 Parameter 𝛾  is a scaling parameter defined as: 

 

 

 𝛾 = √𝑁 + 𝜆, 𝜆 = 𝛼2(𝑁 + 𝜅) − 𝑁, (1-5) 

 where 𝛼 and 𝜅  are tuning parameters. To guarantee the semi-definiteness of the 

covariance matrix 𝜅 ≥ 0, a good default choice is 𝜅 = 0 . The parameter 𝛼 defines 

the spread of the sigma points around  𝑥  and is usually set to a small positive value, 1−4 ≤ 𝛼 ≤  1 . The 𝑖th sigma point is the 𝑖th column of the sigma point matrix 𝜒𝑖,𝑘−1𝑎 .  

 

 Time-update equations  

 Transform the sigma points through the state-update nonlinear function: 

 

 

 𝜒𝑖,𝑘|𝑘−1𝑥 = 𝑓(𝜒𝑖,𝑘−1𝑎 , 𝑢𝑘−1) ,     𝑖 = 0,1, . . . ,2𝑁. (1-6) 

 
 

Calculate the a-priori state estimate and a-priori covariance: 

 

 

 𝑥𝑘− = ∑𝑊𝑖(𝑚)𝜒𝑖,𝑘|𝑘−1𝑥 ,2𝑁
𝑖=0  (1-7) 

 𝑃𝑥𝑘− =∑𝑊𝑖(𝑐)(𝜒𝑖,𝑘|𝑘−1𝑥 − 𝑥𝑘−)(𝜒𝑖,𝑘|𝑘−1𝑥 − 𝑥𝑘−)𝑇2𝑁
𝑖=0 + 𝑄𝑘  , (1-8) 

 
 

where 𝑄𝑘 is the process error covariance matrix. The weights 𝑊(𝑚)
 and 𝑊(𝑐)

 are 

defined as: 

 

 𝑊𝑖(𝑚) ≜ {  𝜆𝑁+𝜆 𝑖 = 0,𝜆2(𝑁+𝜆) 𝑖 = 1, . . . ,2𝑁, (1-9) 

 𝑊𝑖(𝑐) ≜ { 𝜆𝑁+𝜆  + (1 − 𝛼2 + 𝛽) 𝑖 = 0,𝜆2(𝑁+𝜆) 𝑖 = 1, . . . ,2𝑁, (1-10) 

 where 𝛽 is the parameter used to incorporate the prior knowledge of the 

distribution of 𝑥. For a Gaussian prior optimal choice is 𝛽 = 2. 

 

 

(2) Measurement update  

 Transform the sigma points through the measurement-update function: 

 

 

 𝑌𝑖,𝑘|𝑘−1 = ℎ(𝜒𝑖,𝑘|𝑘−1𝑥 )       𝑖 = 0,1, . . . ,2𝑁, (1-11) 

 
 

and calculate the mean and covariance of the measurement: 
 

 �̂�𝑘− = ∑𝑊𝑖(𝑚)𝑌𝑖,𝑘|𝑘−1,2𝑁
𝑖=0  (1-12) 
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 𝑃�̂�𝑘 =∑𝑊𝑖(𝑐)(𝑌𝑖,𝑘|𝑘−1 − �̂�𝑘−)(𝑌𝑖,𝑘|𝑘−1 − �̂�𝑘−)𝑇2𝑁
𝑖=0 + 𝑅𝑘  , (1-13) 

 where 𝑅𝑘 is the measurement noise covariance matrix. The cross covariance is 

defined as: 
 

 𝑃𝑥𝑘𝑦𝑘 =∑𝑊𝑖(𝑐)(𝜒𝑖,𝑘|𝑘−1𝑥 − 𝑥𝑘−)(𝑌𝑖,𝑘|𝑘−1 − �̂�𝑘−)𝑇2𝑁
𝑖=0  , (1-14) 

 
 

Kalman gain is defined as: 
 

 𝐾𝑘 = 𝑃𝑥𝑘𝑦𝑘𝑃�̂�𝑘−1, (1-15) 

 and the UKF estimate and its covariance are computed from the standard Kalman 

update equations: 
 

 𝑥𝑘 = 𝑥𝑘− +𝐾𝑘(𝑦𝑘 − �̂�𝑘−), (1-16) 

 𝑃𝑥𝑘 = 𝑃𝑥𝑘− −𝐾𝑘𝑃�̂�𝑘𝐾𝑘𝑇. (1-17) 

 

1.1.1 Interval Constrained Unscented Transformation 

The candidates to be constrained are a-priori and a-posteriori state estimates, sigma points, sigma 

points propagated through the non-linear function, etc. [13]. The basic idea of the constrained UKF is 

to project the unconstrained set 𝑥𝑘 onto some constrained set �̃�𝑘  by solving the following convex 

problem: min�̃�𝑘 (�̃�𝑘 − 𝑥𝑘)𝑇𝑍𝑘(�̃�𝑘 − 𝑥𝑘)𝑠. 𝑡      𝐴𝑘�̃�𝑘 ≤ 𝑏𝑘,  (1-18) 

 

It can be shown that for 𝑍𝑘 = 𝐼 and 𝐴𝑘 = 𝐼, where 𝐼 is the identity matrix, the solution of (1-18), in 

the case when 𝑥𝑘 violates the constraints, is �̃�𝑘 = 𝑏𝑘. More generally, for constraints introduced as 

box constraints solving (1-18) gives the same solution as clipping, i.e. setting all points outside the 

allowed set to the boundaries. Figure 1.1 shows the clipping approach applied on two-dimensional 

state variable. The sigma points outside a boundary (the dotted lines) are projected back on the 

constraint boundary. As it can be seen from the Figure 1.1 the constrained sigma-points may not be 

symmetric, thus the resulting distribution may not be Gaussian. In this case, the weights of these 

non-symmetric sigma-points need to be adjusted to preserve the Gaussian distribution. The modified 

Unscented Transformation (UT) which includes the projection of the sigma points outside a 

constrained set to the boundaries and adjustment of the weights according to the performed 

modifications is called Interval Constrained Unscented Transformation (ICUT). 
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Figure 1.1: Unconstrained and constrained sigma points, constraints indicated by dashed black lines. a) Illustrates the 

covariance ellipse (dashed line) with unconstrained sigma points (red ◊) and mean 𝒙𝟎. Here two of the four unconstrained 

sigma points 𝝌𝟐 and 𝝌𝟑 lie outside of the constraints. In b) only clipping is applied, i.e. all sigma points outside constraints 

are set to the boundary (blue ◊), result is modified covariance ellipse depicted with solid line and modified mean 𝝌𝟎′ . In c) 

the interval constraint unscented transformation is applied, result is modified covariance ellipse which include all 

constrained sigma points (solid line) and modified mean 𝝌𝟎′′ . 
Standard UT (1-4) is based on a set of deterministically chosen vectors 𝜒𝑖,𝑘−1𝑎 ∈ ℝ𝑁  known as sigma 

points. Sigma points satisfy: 

∑𝑊𝑖(𝑚)𝜒𝑖,𝑘𝑎 = 𝑥𝑘2𝑁
𝑖=0  and ∑𝑊𝑖(𝑐)(𝜒𝑖,𝑘𝑎 − 𝑥𝑘)(𝜒𝑖,𝑘𝑎 − 𝑥𝑘)𝑇 = 𝑃𝑥𝑘2𝑁

𝑖=0  (1-19) 

 

with weights 𝑊𝑖(𝑚) and 𝑊𝑖(𝑐) defined by (1-9) and (1-10). In ICUT, 𝑊(𝑚)
for the mean and 𝑊(𝑚)

 for 

the covariance, are calculated such that when sigma-points do not violate the constraints, the regular 

weights are selected. If the sigma-points are propagated onto the boundary, the weights vary linearly 

with the step size [9]. The weights can be positive or negative but, to provide an unbiased estimate, 

they must obey [12]: 

∑𝑊𝑖 = 12𝑁
𝑖=0  (1-20) 

 

The ICUT algorithm for calculation of the constrained sigma points with state constraints defined as: 𝐿𝑘 ≤ 𝑥𝑘 ≤ 𝑈𝑘 , (1-21) 

 

where 𝐿𝑘 ∈ ℝ𝑁 is vector of lower bounds and 𝑈𝑘 ∈ ℝ𝑁 is vector of upper bounds (the boundaries 

can vary with each iteration) is listed hereinafter.  
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Interval Constrained Unscented Transformation 

Step size vector 𝜉𝑗 is defined as: 𝜉𝑗  ≜    min (col𝑗(ϵ)) (1-22) 

where col𝑗(𝛩) denotes 𝑗th column of matrix 𝛩 where matrix 𝛩 is defined as: 

 

ϵ𝑖,𝑗 ≜ {  
  √𝑁 + 𝜆 𝑖𝑓 Φ𝑖,𝑗 = 0min (√𝑁 + 𝜆,𝑈𝑖,𝑘−�̂�𝑘−1Φ𝑖,𝑗 ) 𝑖𝑓 Φ𝑖,𝑗 > 0min (√𝑁 + 𝜆, 𝐿𝑖,𝑘−�̂�𝑘−1Φ𝑖,𝑗 ) 𝑖𝑓 Φ𝑖,𝑗 < 0, 

 

(1-23) 

Φ = [√𝑃𝑥𝑘 −√𝑃𝑥𝑘]  (1-24) 

Constrained sigma-points 𝜒𝑖,𝑘−1𝑎  are: 

 𝜒𝑖,𝑘−1𝑎 ≜ { 𝑥𝑘−1 𝑗 = 0𝑥𝑘−1 + 𝜉𝑗col𝑗(∑) 1 ≤ 𝑗 ≤ 2𝑁. (1-25) 

 

Adjusted weights are: 𝑊𝑖(𝑚) ≜ {  𝜆𝑁+𝜆 𝑖 = 0,𝜆2(𝑁+𝜆)∑ 𝜉𝑖2𝑁𝑖=1 ⋅ 𝜉𝑖 𝑖 = 1, . . . ,2𝑁   , 

 

(1-26) 

𝑊𝑖(𝑐) ≜ { 𝜆𝑁+𝜆  + (1 − 𝛼2 + 𝛽) 𝑖 = 0,𝜆2(𝑁+𝜆)∑ 𝜉𝑖2𝑁𝑖=1 ⋅ 𝜉𝑖 𝑖 = 1, . . . ,2𝑁  , (1-27) 

1.1.2 Kalman Filter and parameter identification 

A possible way to encounter with parameter Θ estimation is to treat the unknown parameter vector Θ as a dynamical variable itself.  Θ̇ = 0. (1-28) 

 

Although the parameters are constant within the state dynamics, they are modified in each recursion 

step by measurement update equation, as long as their current values deviates from the true one. It 

is important to note that even if the system model (1-1) is linear the joint model for estimation of 

states in parameters is bilinear in both states and parameters. The joint identification problem for 

simultaneous estimation of parameters and states, is as follows:   

 [𝑥𝑘Θ𝑘] = [𝑓(𝑥𝑘−1, 𝑢𝑘−1, Θ𝑘−1)Θ𝑘−1 ] + 𝑤𝑘−1, 

 

(1-29) 

𝑦𝑘 = ℎ(𝑥𝑘−1, 𝑢𝑘−1, Θ𝑘−1) + 𝑣𝑘 . (1-30) 

 

When parameters are the only unknowns (all states are measurable) separate estimation of 

parameters only can be done with modified form of UKF algorithm [6] where discrete transition 

function for parameters has the following form: 
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 Θ𝑘 = Θ𝑘−1 + 𝑤𝑘−1 

 

(1-31) 𝑦𝑘 = ℎ(𝑥𝑘−1, 𝑢𝑘−1, Θ𝑘−1)  + 𝑣𝑘 , (1-32) 

 

An 𝒪(𝑀𝐿2) algorithm, as opposed to 𝒪(𝐿3) is possible by taking advantage of the linear state 

transition function (1-28). 

1.2 Building model form selection 

By observing time constants of building thermodynamics processes it is evident that the 

dominant time constants are related to air temperature. Other, noticeably larger time constants are 

related to the walls or additional internal masses like furniture due to their higher thermal capacity. 

The zone thermodynamic can be approximated with two thermal masses: fast dynamic with lower 

thermal capacity related to the air temperature inside a zone and slow dynamics with a higher 

thermal capacity related to the solid zone parts (walls and furniture) [2]: 

 𝑝1 𝑖 �̇�1𝑖  =  ∑ 𝑝3𝑖𝑗(𝑇1𝑗 − 𝑇1𝑖)𝑗∈𝒱𝑖 + 𝑝4𝑖 (𝑇𝑜 − 𝑇1𝑖) + 𝑝5𝑖 (𝑇2𝑖 − 𝑇1𝑖) + 𝑝6𝑖  𝐼𝑑𝑖𝑟  +  𝑝7𝑖  𝐼𝑑𝑖𝑓  +  𝑃𝑡,𝑖, 
 

(1-33) 𝑝2𝑖 �̇�1𝑖 =  𝑝5𝑖  (𝑇1𝑖 − 𝑇2𝑖), (1-34) 

 

where 𝑇1𝑖  is the temperature of the fast-dynamic mass which is assumed to be equal to the 

temperature of the air inside the 𝑖th zone, 𝑇2𝑖 is the temperature of the 𝑖th zone slow dynamic mass, 𝑇𝑜 is outer air temperature, 𝒱𝑖 is a set of zones adjacent to the 𝑖th zone, 𝑃𝑡,𝑖  is measurable thermal 

load affecting the 𝑖th zone, 𝐼𝑑𝑖𝑓  and 𝐼𝑑𝑖𝑟  are diffuse and direct solar irradiances on the external zone 

wall(s) respectively. The unknown parameters of the 𝑖th zone are denoted with 𝑝1:7𝑖 . Parameters 𝑝1 𝑖  

and 𝑝2𝑖  correspond to thermal capacities of the 𝑖th zone fast-dynamic mass and 𝑖th zone slow-

dynamic mass, while parameters 𝑝3:7𝑖  correspond to the associated thermal resistances.  

In steady state, temperature distribution through a solid wall is linear, i.e. the heat transfer 

between two adjacent zones is proportional to the temperature difference between those zones, 

where factor of proportionality is overall heat resistance of a wall that separates them. Modern 

construction materials assure good thermal insulation between the zones. Additionally, temperature 

distribution in most commercial and public buildings is almost uniform resulting in small heat flux 

between the zones which makes the estimation of the overall heat resistance of the wall hard. To 

avoid the problem, simplified thermodynamic model of every zone is estimated separately by 

assuming 𝒱𝑖 = { }. To identify the model (1-33), (1-34) numerical integration within the filter 

sampling time 𝑇𝑠𝑓 or discretization with a discretization time 𝑇𝑠   selected as a multiple of the filter 

sampling time should be applied. The building model discretized by Euler method is as follows: 

[𝑇1(𝑘 + 1)𝑇2(𝑘 + 1)] = [1 − (𝑝𝑑,1𝑖 + 𝑝𝑑,3𝑖 )𝑇𝑠 𝑝𝑑,1𝑖′ 𝑇𝑠𝑝𝑑,2𝑖 𝑇𝑠 1 − 𝑝𝑑,2𝑖′ 𝑇𝑠] [𝑇1(𝑘)𝑇2(𝑘)] + [𝑝𝑑,3𝑖 𝑝𝑑,4𝑖 𝑝𝑑,5𝑖 𝑝𝑑,6𝑖0 0 0 0 ] [ 𝑇𝑜𝐼𝑑𝑖𝑓𝐼𝑑𝑖𝑟𝐸𝑡,𝑖 ]. (1-35) 

 

Continuous system parameters 𝑝1:7𝑖   can easily be recalculated from the discrete system parameters  𝑝𝑑,1:6𝑖  through algebraic functions.  
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1.3 Test results 

Estimation algorithm is tested on an artificial data set with known parameters. The data set is 

created by taking real building input measurements for a typical south oriented zone (part of UNIZG-

FER skyscraper) during 8 days in 2016, and simulating the model with parameters obtained from 

batch optimization. The simulated slow and fast dynamics temperatures are then used to validate 

the algorithm. Estimation results are shown in Figure 1.2. with estimated parameters normalized to 

interval [0,10]. Since the algorithm is tested on normal operation data set and not on the data set 

containing highly excited temperatures, parameter convergence time is up to one week. Filter 

successfully follows the states dynamics all the time.  

 

Figure 1.2. Estimation results for a typical zone. 
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2 Submodule for estimation of the states of the simplified building 

thermal dynamics model including also the estimation of heat 

disturbance in zone (Z.PE.5) 

Heat disturbance in zone implies sum of additional heat flows in the zone which are not included into 

the estimated building model or occur due to the changed conditions in the zone compared to the 

one used for estimation of the zone model. Typical examples of heat disturbances are: window 

opening, shading position changes, electronic equipment, occupancy, lighting.  

Slow dynamics temperature, which is a part of the estimated building model presents substitute 

variable for all higher thermal capacity element temperatures (e.g. walls and furniture). As such, it is 

hardly measurable and have to be estimated online. 

The submodule interface is defined in the following tables (Table 2.1, Table 2.2). 

Table 2.1: Required inputs for the submodule for identification of simplified building thermodynamic model 

Variable name Variable annotation Variable description 

Parameters of the simplified 

building thermal dynamics model 

𝐴𝑟𝑜𝑜𝑚, 𝐵𝑟𝑜𝑜𝑚 , 𝐶𝑟𝑜𝑜𝑚, 𝐷𝑟𝑜𝑜𝑚 

Model identified with the 

procedure from above 

Temperature measurement in 

rooms/zones of the building 

(minute-scale of the sampling 

time) 

𝑇 

(noted herein as 𝑇1 ) 

Current temperature 

measurement in room/zone 

Outdoor temperature (minute-

scale of the sampling time) 
𝑇o 

Current outdoor temperature 

measurement 

Solar irradiance estimation on all 

relevant building surfaces 

(minute-scale of the sampling 

time)  

𝐼solar 
(noted herein as 𝐼𝑑𝑖𝑓 , 𝐼𝑑𝑖𝑟) 

Current amount of the solar 

radiation on different surfaces 

of the building (estimated from 

local measurements) 

Energy inputs from 

heating/cooling elements in 

zones (minute-scale of the 

sampling time) 

𝐸T 

(noted herein as 𝐸t) 

Current amount of the energy 

input from the heating/cooling 

elements in zones calculated 

based on the heating/cooling 

element model 

 

Table 2.2: Outputs of the submodule for identification of simplified building thermodynamic model 

Variable name Variable annotation Variable description 

Estimated states of the simplified 

building thermal dynamics model 

𝑥0 

 

(noted herein as [𝑇1(0)𝑇2(0)]) 
 

States needed for the MPC 

module on the zone level 

Estimated heat disturbance in zone 𝐸0D 

 

(noted herein as 𝐸d(0)) 
Current disturbances needed 

for the MPC module, for the 

interface submodule, and also 

for disturbance prediction 
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2.1 Methodology 

Heat disturbance 𝐸𝑑  is modelled as additive heat flux by introducing the additional heat flux into the 

system model: 

[𝑇1(𝑘 + 1)𝑇2(𝑘 + 1)] = 𝐴 ⋅ [𝑇1(𝑘)𝑇2(𝑘)] + [B 𝑝𝑑,6𝑖0 0 ] ⋅ [  
  𝑇𝑜(𝑘)𝐼𝑑𝑖𝑟 (𝑘)𝐼𝑑𝑖𝑓𝑓 (𝑘)𝐸𝑡(𝑘)𝐸𝑑(𝑘) ]  

   , (2-1) 

 

where 𝑇1 is zone temperature,  𝑇2 is equivalent temperature of all thermal masses affecting the zone, 𝑇𝑜 is outdoor air temperature, direct and diffuse solar irradiance are denoted with 𝐼𝑑𝑖𝑟 and 𝐼𝑑𝑖𝑓𝑓, 

measured thermal energies from heating/cooling devices are denoted with 𝐸𝑡. System matrices 𝐴 ∈ ℝ2×2  and 𝐵 ∈ ℝ2×5  and parameter 𝑝𝑑,6𝑖  are obtained through identification procedure for 

determining the zone temperature dynamics model (Chapter 1). Heat disturbance is denoted with 𝐸𝑑. Due to the similar nature of thermal fluxes 𝐸𝑡 and 𝐸𝑑 , their impact on the zone temperature is 

modelled with the same parameter 𝑝𝑑,6𝑖 .  

For known outdoor temperature, solar irradiances 𝐼𝑑𝑖𝑟  and 𝐼𝑑𝑖𝑓𝑓 , thermal energy 𝐸𝑡   and zone 

temperature 𝑇1 , the remaining unknowns are the slow dynamics temperature 𝑇2  and heat 

disturbance energy input 𝐸𝑑. Stochastic dynamics of the heat disturbance is defined as: 𝐸𝑑(𝑘 + 1) = 𝐸𝑑(𝑘) + 𝑤𝑑(𝑘),  (2-2) 

 

where 𝑤𝑑(𝑘) ∼ 𝑁(0, 𝑄𝑑) is high covariance system noise with covariance 𝑄𝑑. By introducing the 

dynamics of heat disturbance into equation (2-1) the following form, suitable for implementation of 

linear Kalman Filter [11] is obtained: 

[𝑇1(𝑘 + 1)𝑇2(𝑘 + 1)𝐸𝑑(𝑘 + 1)] = [𝐴 𝑝𝑑,6𝑖0 1 ] ⋅ [𝑇1(𝑘)𝑇2(𝑘)𝐸𝑑(𝑘)] + B ⋅ [  
 𝑇𝑜(𝑘)𝐼𝑑𝑖𝑟 (𝑘)𝐼𝑑𝑖𝑓𝑓 (𝑘)𝐸𝑡(𝑘) ]  

 + [𝑤𝑡1(𝑘)𝑤𝑡2(𝑘)𝑤𝑑(𝑘)],  (2-3) 

 

where process noise regarding temperatures is denoted with 𝑤𝑡1 and 𝑤𝑡2.  To successfully capture 

transient behaviours which can occur on a minute scale the filter sampling time is set to one minute.  

Results of disturbance heat flux estimation on artificial data set from IDA-ICE [13] are shown in Figure 

2.1. 
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Figure 2.1: Estimation of unmeasured disturbance heat flux in zone. 

 

As it can be seen, on-line estimation of disturbances with fixed model parameters successfully 

captures the disturbance behaviour. Accurate estimation of disturbance loads is of great importance 

for monitoring the space usage and thus the more efficient zone temperature control through: better 

prediction of future disturbance behaviour based on historical data, detection of window openness 

and provision of offset-free control when zone temperature is regulated by using predictive control 

algorithms. 
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3 Fan coils identification submodule (Z.PE.1) 

A Fan Coil Unit (FCU) consists of a fan and at least one air-water heat exchanger. Due to their 

improved performance over classic radiators, FCUs are widely used for localized heating and cooling. 

However, advanced control, diagnosis and fault detection algorithms, which are well-established in 

other industries, are still hardly used for FCUs due to a lack of appropriate mathematical models that 

are easy to parametrize. While experimental analysis of general heat exchanger thermodynamic 

behaviour has been subject of numerous articles [23][24][26], experimental analysis of a FCU as a 

whole has been investigated in just a few papers concerning mainly one FCU [25][27]. In general, the 

developed models can be divided into three groups: i) physical models build on first principles 

[19][21], ii) non-physical models totally dependent on the experimental data [22][26] and iii) semi-

physical models offering the compromise between first two approaches [23][24]. Models built on 

first principles typically require detailed physical properties of FCUs, such as fin thickness, tube 

dimensions, etc., which are often omitted from manufacturers data sheets and hardly measurable on 

the final on-site product [21]. On the other hand, the accuracy of the non-physical models, which are 

usually in a form of simple linear approximations around an operating point [27] or neural networks, 

could be an issue when applying them outside the training range. Also, the final model forms may be 

too complex for control purposes and real-time implementations. Semi-physical modelling presents a 

compromise between the first two modelling approaches by taking physical considerations into 

account when identifying the model based on the experimental data. Besides the thermodynamic 

performance, a hydrodynamic performance of a FCU and the sensor free solution for determining the 

medium mass flow through the unit is often neglected. In [24] authors suggested use of the pressure 

drop sensors to determine mass flow through the heat exchanger which tends to be cost-intensive 

when applied to individual FCUs.  

In this chapter, a replicable, robust, simple and fast methodology for identification of a 

thermohydraulic model of an on-site FCU is derived by consolidating the advantages of first 

principles modelling, identification methods and data sheet information. Consolidation of all the 

available tools downsized the number of required sensors to a single sensor per FCU, zone 

temperature sensor and calorimeter installed on major supply ducts. Use of energy meters is 

optionally suggested as a cost-effective solution for on-line monitoring of FCU performance. 

Although one single FCU consumes relatively small amount of electricity, due to many units installed 

in a whole building and long operation hours, the inclusion of the electrical consumption model into 

control algorithm can lead to significant electrical energy savings. Identification and validation of the 

identified models are performed within the living-lab pilot on predictive building zones control.   

 

The submodule interface is defined in the following tables (Table 3.1, Table 3.2). Test site 

configuration is described in Section 3.1. In Section 3.2, an analogue electro-hydraulic model for a 

test site is developed and optimized to find a flow distribution along the test site. A thermodynamic 

model of a FCU unit is introduced in Section 3.3. In Section 3.4 an experimental analysis of both 

thermodynamic and hydraulic performance is conducted to find the unknown model parameters. 

After the parameters have been found both models are tested and validated experimentaly as shown 

in Section 3.4.  
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Table 3.1: Required inputs for the fan coils identification submodule. 

Variable name Notation Description 

Historical temperature profile from zone 

(minute-scale of the sampling time) 

𝑇 

(noted herein 

as 𝑇1 ) 

Data taken from the database 

Historical profile of fan actuation in the 

zone (minute-scale of the sampling time) 

FS 

(noted herein 

as 𝑥 ) 

Data taken from the database 

Historical temperature profile of the 

supply medium from a calorimeter 

(minute-scale of the sampling time) 

𝑇supply,cal  Data taken from the database  

Historical temperature profile of the 

return medium from a calorimeter 

(minute-scale of the sampling time) 

𝑇return,cal  Data taken from the database (might 

not be needed, but will be available) 

Historical profile of the flow from a 

calorimeter (minute-scale of the sampling 

time) 

𝑄cal Data taken from the database 

Historical profile of energy (power) 

recorded on the calorimeter (minute-

scale of the sampling time) 

𝐸cal (𝑃cal)  Data taken from the database 

Historical temperature profile from the 

return medium temperature sensor on a 

fan coil (minute-scale of the sampling 

time) 

𝑇return,fc 
(noted herein 

as  𝑇wout ) 
Data taken from the database 

Historical temperature profile from the 

supply medium temperature sensor on a 

fan coil (minute-scale of the sampling 

time) 

𝑇supply_fc 
(noted herein 

as 𝑇win ) 

(optional) If not existing, 

measurement of the temperature on 

the calorimeter should be used, and 

additionally a characteristic of the 

temperature drop along the pipeline 

from the heat loss model should be 

used 
 

Table 3.2: Outputs of the fan coils identification submodule. 

Variable name Notation Description 

Parameters of the fan coil model that 

relates fan coil actuation, room 

temperature and medium conditions 

registered on a calorimeter to fan coil 

energy transmitted to room air in a 

defined time period; also parameters of a 

simple relation between heating energy 

and electrical energy for fans for different 

supply medium flows and temperatures   

𝐴fc(𝑄w), 𝐵fc(𝑄w), 𝐶fc(𝑄w), 𝐷fc(𝑄w) 

Parameters needed for calculation of 

maximum energy for the MPC 

module, for the interface submodule 

functioning, and for calculation of 

energy inputs for identification of a 

simplified building dynamic model 

and for on-line estimation of its 

states and disturbances; electricity 

consumption model needed on the 

first higher level MPC modules 
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3.1 Test site configuration 

The considered living lab of UNIZG-FER spans over two floors of university skyscraper (9
th

 and 

10
th

 floor). Zones on the north side and on the south side are supplied via separate supply lines such 

that each floor has separate north-side and south-side piping.  The central part of the living lab is a 

supervisory control and data acquisition (SCADA) system operating on a minute time-scale. The 

heating/cooling is a hydronic two-pipe system that provides seasonal cooling or heating. The FCUs, 

produced by manufacturer Trane (models FCC06 and FCC04) \cite{TRANE}, are equipped with a 

centrifugal fan with four different fan speeds (Zero, Low, Medium and High, denoted respectively by 

0, L, M and H) and three-way valve (on-off type). Both fan speed and valve position are controlled by 

Siemens RXC21.1/RXC21.5 zone temperature controllers operating on LonWorks network. Each 

controllable zone includes a separate user interface for temperature reference selection (QAX34.1 

device). The existing communication network is enhanced such that the RXC controllers are 

reconfigured to be able to pass the information to a central database (current zone temperature, fan 

speed and valve actuation) or can receive the commands from the database (fan speed, valve 

actuation). All FCUs in the same zone are actuated simultaneously. The system is further upgraded by 

installing low-cost 1-wire digital temperature sensors DS18B20 on the FCUs return pipes and Siemens 

calorimeters UH50-A50-00 operating on M-Bus protocol on every floor supply duct.  Calorimeters 

measure supply and return medium temperature, temperature difference, medium flow, thermal 

power and consumed thermal energy with one-minute time resolution. Overall electrical 

consumption of all FCUs is measured by one common electrical energy meter, Schneider Electric 

PM3200 operating on Modbus protocol. All systems are integrated together with a network 

controller unit employed to enable two-way communication between devices operating on different 

protocols. Logical organization of the described system is shown in Figure 3.1.   

 
Figure 3.1. Logical organization of Living-lab sensor-actuator network. 

We focus on the south-side piping on the 9
th

 floor consisted of 13 zones with 17 vertical FCUs 

mounted on the floor, 12 units of type FCC06 and 5 units of type FCC04 (Figure 3.2). The 

arrangement of units with included geometry of supply pipes (length and diameter) is given in                        

Table 3.3. The equivalent length of vertical supply and return pipes (including fittings) is identical for 

all units and amounts 𝑙 + ∑ 𝑙eq = 6.26 m.   
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Figure 3.2: Layout of the southern supply duct on the 9th floor. 

 

                          Table 3.3: Duct sizing information. 

Zone ID 
Supply pipe diameter  

[mm] 

Supply pipe length 

 [m] 

FCU unit 

type 

Zone 1 
18 1.7 FCC06 

22 3.5 FCC06 

Zone 2 
28 1.7 FCC06 

35 3.5 FCC06 

Zone 3 35 3.5 FCC06 

Zone 4 35 3.5 FCC06 

Zone 5 42 3.5 FCC06 

Zone 6 
42 1.7. FCC04 

42 3.5 FCC04 

Zone 7 42 3.5 FCC06 

Zone 8 42 1.7 FCC06 

Zone 9 42 2.1 FCC04 

Zone 10 28 5 FCC06 

Zone 11 28 1.7 FCC06 

Zone 12 
28 3.5 FCC04 

22 1.7 FCC04 

Zone 13 18 3.5 FCC06 

 

 

3.2 Hydraulic model of heating/cooling installations  

The medium flow through a FCU depends on the pressure drop across the various elements that 

form up the entire installation. A practical way of modelling complex hydraulic systems is the 

transition to an analogous electric model where medium mass flow 𝑞w, pressure drop Δ𝑝  and 

hydraulic resistance 𝑅ℎ behave equivalently to electrical current, voltage and electrical resistance, 

respectively. In a series electrical circuit, the current through all the elements is the same and voltage 

drops along the elements are additive. The voltage drop across all elements connected in parallel is 

the same while the total current is equal to the sum of the currents through each of the branches. 

The same logic is applied to a hydraulic installations network consisted of hydraulic elements such as 

pipes, heat exchangers, tees, elbows, etc. The equation relating pressure drop and mass flow through 

a hydraulic network element is equal to: Δ𝑝 = 𝑅ℎ ⋅ 𝑞w𝛼 , (3-1) 
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where 𝑅ℎ is a constant hydraulic resistance and 𝛼 is an exponent. The values of 𝛼 depend on the 

methodology used for calculation of 𝑅ℎ and the element type.  

Pressure loss in pipes consists of three components: (i) hydrostatic pressure loss Δ𝑝ℎ, (ii) 

frictional pressure loss Δ𝑝𝑓 and (iii) kinetic pressure loss. For most applications, kinetic losses are 

minimal and can be ignored. Thus, the equation that describes the overall pressure loss in pipes is 

expressed as a sum of two major terms: Δ𝑝𝑝 = Δ𝑝𝑓 + Δ𝑝ℎ , (3-2) 

The hydrostatic pressure drop occurs only when there are differences in elevation from the inlet to 

the outlet of a pipe segment: Δ𝑝ℎ = 𝜌 ⋅ 𝑔 ⋅ Δℎ, (3-3) 

where 𝑔 is acceleration of gravity and Δℎ is change in pipe elevation. The frictional pressure drop in a 

circular pipe with constant inner diameter 𝑑 and length 𝑙 is defined by Darcy-Weisbach equation: 

𝛥 𝑝𝑓  = 𝑓𝐷 8 ⋅  𝑙𝜌 ⋅ 𝜋2 ⋅  𝑑5 ⋅  𝑞w2 , (3-4) 

where 𝜌 is the density of  heating/cooling  medium and 𝑓𝐷 is the friction factor. For hydraulically 

smooth pipes 𝑓𝐷 is defined by Blasius equation: 𝑓𝐷 = 0.3164 ⋅  𝑅𝑒−0.25, (3-5) 

where 𝑅𝑒 is Reynolds number defined as: 

𝑅𝑒 = 4𝜇 ⋅  𝑑 ⋅ 𝜋 ⋅ 𝑞w, (3-6) 

and  𝜇  is dynamic viscosity of the medium. In addition to the losses due to the friction or elevation 

difference, there are also losses associated with flow through valves and fittings. These, so called 

minor pressure losses, are accounted by using the equivalent length method [59]. The method uses 

empirical tables to convert each fitting into an equivalent length of the straight pipe 𝑙eq   which is 

then added to the pipe length 𝑙. The 𝑙eq/𝑑 ratio for most common types of fitting is given in Table 

3.4. 

                      Table 3.4. Equivalent length of fittings [59],[60]. 

Type of fitting 𝒍eq/𝒅 

Tee - along the straight 20 

Tee - to the branch   60 

Elbow 90 (smooth radius) 30 

Three-way valve (fully opened - through flow) 30 

Sudden pipe diameter expansion 4* 

Sudden pipe diameter contraction 20* 

* used with inlet velocity  

By inserting (3-6) and (3-5) into (3-4) and including the minor losses, the final form of frictional 

pressure drop across the circular pipe section is defined as: Δ 𝑝fc = 𝑅fc ⋅  𝑞w𝛼fc , (3-7) 
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where 𝑅fc and 𝛼fc are parameters to be found based on the experiments or pressure drop data from 

the manufacturers' catalogue. 

Based on the electric-hydraulic analogy and known heating/cooling network topology and 

geometry of the pipes, the equivalent electrical scheme of the supply/return piping around FCUs is 

derived Figure 3.3.  

 

Figure 3.3: Equivalent electrical scheme of the 9
th

 floor south supply duct heating/cooling installations. 

Supply pipe, return pipe and FCU hydraulic resistances are denoted as 𝑅ps , 𝑅pr  and 𝑅fc, respectively. 

For clarity, hydraulic resistances of pipes in parallel branches are not shown. For every closed loop of 

the circuit, once the hydraulic resistances and mass flows are known, the pressure drop is defined 

with Kirchhoff's circuit laws ∀ 𝑗 = 1,… , 𝑛 − 1: 

Δ 𝑝𝑗 =
{  
  Δ𝑝𝑗+1 −∑𝑞w,𝑖1.75𝑗

𝑖=1 (𝑅p,js + 𝑅p,jr ) for 𝑗 ≤ 𝑘
Δ𝑝𝑗+1 +∑𝑞w,𝑖1.75𝑛

𝑖=𝑗 (𝑅p,js + 𝑅p,jr ) for 𝑗 > 𝑘, (3-8) 

where Δ 𝑝𝑗  is the overall pressure drop in a parallel branch including pressure drop through FCU and 

pressure drop in associated vertical supply and return pipes,  Δ𝑝𝑘+1 = Δ𝑝o  is the overall network 

pressure drop of the entire duct, 𝑛 is the total number of the FCUs connected to the duct and 𝑞w,𝑖 is 

medium mass flow though 𝑖th network branch.  For known overall medium mass flow denoted with 𝑞w,om  the individual FCU mass flows are found by solving the following optimization problem: minΔ𝑝o |𝑞w,om − 𝑞w,o|                                𝑠. 𝑡  𝑞w,o =∑𝑞w,𝑖,𝑛
𝑖=1                           (3-2),(3-3),(3-7),(3-8),(3-9)  (3-9) 

The optimization problem (3-8) belongs to a class of nonlinear programs which can be efficiently 

solved with e.g. genetic algorithms [58]. For installations with operable valves, where flow 

distribution is time-variable and based on the valve positions, the procedure is extended by 

introducing variable valves hydraulic resistances in the network. 
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3.3 Thermodynamic fan coil unit model  

Heat transfer within a FCU consists of three parts: convection of the heating/cooling medium, heat 

conduction through the heat exchanger and convection of air to be heated or cooled. For modelling, 

the following assumptions are made: 

- air mass flow 𝑞a inside the FCU variates with the fan speed, 

- mean water temperature inside the FCU is approximately the arithmetic average of water 

inlet temperature 𝑇win and water outlet temperature 𝑇wout, i.e. 𝑇w = 0.5(𝑇win+ 𝑇wout), 
- heat transfer from water to air is driven by the temperature difference (𝑇w − 𝑇ain), 
- air intake temperature 𝑇ain a is assumed to be equal to zone temperature, 

- properties of air and water are assumed to be constant. 

 

Furthermore, due to the parallel connection of the FCUs and constant pressure drop within the 

system maintained by a central circulation pump, the FCUs are considered independent. With set 

assumptions, the following dynamics equations are derived for each FCU: 

 𝑚a𝑐a �̇�aout = 𝑞a𝑐a(𝑇ain − 𝑇aout) + 𝑈o(𝑇w − 𝑇ain),   (3-10) 

 𝑚w𝑐w �̇�wout = 𝑞w𝑐w(𝑇win − 𝑇wout) − 𝑈𝑜(𝑇w − 𝑇ain), (3-11) 

 

where 𝑇𝑎out is the outgoing air temperature, 𝑐a , 𝑐w  and 𝑈o = 𝑓(𝑞a, 𝑞w)  are the specific heat capacity 

of air, specific heat capacity of water and the heat transfer coefficient, respectively. Parameter 𝑚a is 

the mass of air inside the fan coil unit, 𝑚w is the mass of water inside the coil and it is easily obtained 

from manufacturers data sheets. According to the FCU dimensions, a mass of the air inside the FCU is 

less than 0.1 kg, thus time constant of the air 𝑚a/𝑞a is less than 1 s, which makes it negligible when 

compared to the significantly larger time constant of the water. Due to a very small time constant, 

thermal process from the air side is observed as a stationary process (e.g. �̇�wout = 0). 

 0 = 𝑄a𝑐a(𝑇ain − 𝑇aout)⏟          𝑃a +𝑈o(𝑇w − 𝑇ain)⏟        𝑃t ,  
(3-12) 

 

This further means that the thermal power affecting the zone  𝑃a is equal to the overall transmitted 

thermal power 𝑃t . The important feature of this approach is that the hardly measurable and 

unreliable 𝑇𝑎out measurement is omitted. During the cooling season relation (3-10), due to the 

possible phase-change of the water vapour contained in the air, goes to: 

 𝑚a𝑐a �̇�aout = 𝑞a𝑐a(𝑇ain − 𝑇aout) + 𝑈o(𝑇w − 𝑇ain) + 𝑃𝑙 ,   (3-13) 

 

where 𝑃𝑙  is latent power defined as: 𝑃𝑙 = 𝑞a𝜆(𝜔aout −𝜔ain),   (3-14) 𝜆 is the latent heat of vaporization of water and 𝜔ain and 𝜔aout are absolute humidities of the air at the 

FCU air intake and exhaust. 
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3.4 Experimental analysis of hydraulic and thermodynamic FCU behaviour 

To identify the thermodynamic model and experimentally validate the algorithm developed 

within Section 3.2, an identification procedure was ran on all FCUs. The identification is performed by 

shutting down all the units connected to the same duct (or assure their constant operation) and 

running a test sequence on the particular unit. Valves remained fully opened for all units. In such a 

set-up the calorimeter on the duct’s inlet measures the heat consumption of the particular unit with 

a constant offset equal to the thermal power of the remaining duct part. To assure constant losses, 

supply medium mass flow and temperature are required to be constant during the test. If supply 

temperature is not constant, identification procedure can still be done by identifying variable 

thermal losses during the test. 

Return medium temperature sensors and calorimeters are modelled as ideal elements with 

variable transport delay 𝜏: 𝐻(𝑠) = 𝑒−𝜏⋅𝑠. (3-15) 

Transport delay is estimated manually for every data set by comparing the response time of the 

sensors with the time when fan speed change occurred.  Measurements obtained after running the 

test in Zone 7 during the heating season 2016/17 are shown in Figure 3.4. In the following 

subsections transmission heat losses are neglected due to the good thermal insulation of the 

pipeline. This means that the FCU water inlet temperature is considered to be equal to the supply 

temperature measured by the calorimeter 𝑇cal (𝑇win = 𝑇cal). If this is not the case, temperature drop 

along the network should also be modelled or additional temperature sensors have to be mounted at 

the FCU water inlet. 

3.4.1 One wire return medium temperature sensors calibration 

Indirect measurement of the return medium temperature with the 1-wire sensor mounted 

on the FCU return pipe is subject to various effects (e.g. lead wires acting as a thermal sink, sensor 

insulation, effects of ambient temperature, etc.) that cause deviation from the real temperature. To 

eliminate the offset, measurements have to be compared with a trusted calibrated sensor in at least 

two operating points. Ideally, one close to the lower and one close to the upper bound of the 

operating range. This so-called two-point calibration method essentially re-scales the output and is 

capable of correcting both slope and offset errors. Specific to the test-site, due to the well-insulated 

supply pipelines, large thermal conductivity of the copper pipes and 1-wire sensor mounted close to 

a bypass branch (Figure 3.5), offset characteristics is determined using historical measurements of 

supply medium temperature 𝑇cal  from the calorimeter with switched off fan and closed FCU valves 

(total flow goes through the bypass branch).  

To avoid the transient impact of the medium stalled inside the heat exchanger, only 

stationary values are used. Figure 3.6 shows the calibration curve obtained by calibrating the 1-wire 

sensor mounted on the FCU return in Zone 7. The functional dependence is intentionally fitted only 

to raw sensor measurements 𝑇w,𝑖out,raw, instead of fitting it to the temperature difference between the 

sensor and its surroundings, since ambient temperature is always within narrow user comfort range 

and has negligible effect. 
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Figure 3.4. Measurements obtained after running the identification procedure in the exemplary Zone 7.  

 

 
Figure 3.5. One wire return medium temperature sensor 

placement. 

 

 
Figure 3.6: One wire return medium temperature sensor 

characteristics. 

 

 

When FCUs are operated (fan speed different than zero and valves fully opened) high 

thermal conductivity of the cooper pipes combined with large temperature difference between the 

supply and return pipe additionally skew the measurements.  Since supply and return pipes are 

thermally coupled through the bypass, large thermal gradient between them influence the sensor 

measurements proportionally to temperature difference between the pipes. True temperature 

measurement 𝑇w,𝑖out,m is thus defined as: 𝑇w,𝑖out,m =𝑇w,𝑖out,c − 𝜙(𝑇w,𝑖in − 𝑇w,𝑖out,m ) (3-16) 
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where 𝑇w,𝑖out,c is the calibrated sensor measurement of the 𝑖th FCU,  𝑇w,𝑖in = 𝑇cal  and 𝜙 is the unknown 

heat transfer coefficient. For ideal mixing of the return medium from different FCUs and only the 𝑖th 

FCU operating at the time, the following holds: 𝑞w,𝑖(𝑇w,𝑖in − 𝑇w,𝑖out,m) = 𝑞w,oΔ𝑇cal,𝑖 , (3-17) 

where Δ𝑇cal,𝑖 is temperature difference measured on the calorimeter reduced for the constant 

temperature drop assessed in the steady operation of the remaining pipework and FCUs.  Since ∑ 𝑞w,𝑖 = 𝑞w,o𝑛𝑖=1 , by combining (3-16) and (3-17) heat transfer coefficient 𝜙 is defined as: 

𝜙 = 1 − 1∑ Δ𝑇cal,j∑ (𝑇w,𝑖in − 𝑇w,𝑖out,c)𝑖∈𝜈𝑗𝑁𝑗=1  
(3-18) 

where  𝑁  is the total number of zones and 𝜈𝑗  is the set of FCUs placed in the 𝑗th zone. To get the 

unique estimate of 𝜙, independent tests were performed in all zones with FCUs active in only one 

zone at the time and valves fully opened. Estimated 𝜙 value for the test-site is 𝜙 =0.1534. 

3.4.2 Hydraulic model identification 

The correlation between pressure drop and mass flow for both FCU types is found by 

identifying the unknown coefficients 𝑅fc  and 𝛼fc  based on the data from the manufacturers' 

catalogue (see e.g. Figure 3.7  for FCC06 FCU type). 

 
                 Figure 3.7. Identified pressure drop function for Trane model FCC06. 

With known coefficients and topology and geometry of the pipes, an analogous electrical model of 

the test-site hydraulic installations is developed. To set up the optimization problem (3-9) single 

measurement of the overall medium mass flow 𝑞w,om = 𝑞calm  from the calorimeter is used. The flow 

distribution through the entire network is found by solving the optimization problem (3-9) in 

MATLAB using genetic algorithms [58]. The resulting flow distribution, defined as 𝜂𝑖  = 𝑞w,𝑖/𝑞w,o 
rounded to two decimals is listed in column 1 in Table Table 3.6. 

The validity of the developed approach is verified by comparing the results with the solutions 

of the following optimization problem solved for all identification data sets separately: 

(𝜂𝑒,𝑖∗ , 𝑃𝑑∗) = argmin𝜂𝑒,𝑖,𝑃𝑑 ‖𝜂𝑒,𝑖 ⋅ 𝑃wa − (𝑃calm − 𝑃𝑑)‖2 (3-11) 
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where  𝑃wa = 𝑞w,om 𝑐w,cal(𝑇win,m − 𝑇wout,m) is a-priori FCU water side thermal power calculated with 

nominal water heat capacity used by calorimeter 𝑐w,cal (usually set to 4180 J/(kg°C)) and 𝑃calm  is is 

thermal power measurement from the calorimeter and 𝑃𝑑  is constant thermal power consumed by 

the rest of the duct.  The identified individual flow shares according to (3-11), for 8 tests  performed 

in the exemplary Zone 7 during winter 2015 and 2016 are shown in Table 3.5. The mean flow share is �̅�𝑒,7 = 7.40 %, which deviated from the calculated value based on the electric-hydraulic analogy only 

by 2.84 % (see Table 3.5). 

        Table 3.5: Estimated flow share for Trane FCC06 installed in zone 9. 

 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 𝑞w,7  [𝑘𝑔ℎ ] 0.027 0.028 0.027 0.028 0.029 0.023 0.022 0.030 100 ⋅ 𝜂𝑒,7∗  [%] 7.26 7.35 7.35 7.57 7.34 7.26 7.78 7.31 

The identified flow distribution of the test-site is listed in column 6 in Table 3.6. Since all FCUs in a 

single zone are actuated simultaneously, for zones with more than one FCU, mean flow share of all 

units is calculated instead of individual shares.  Average relative error, mainly due to sensor accuracy, 

is 1.16 %, which proves the adequate accuracy of electric-hydraulic analogy based calculation of flow 

distribution through the supply line. In zones marked with ‘x’ measurements were unavailable. 

                          Table 3.6: Estimated flow share for the south supply line on the 9th floor for 𝒒𝒘,𝒐 ≈ 𝟎.𝟑𝟔 kg/s. 
Zone ID 

Calculated flow 

share  𝜂𝑖  [%] Estimated flow share 𝜂𝑒,𝑖  [%] Relative error |𝜂𝑖 − 𝜂𝑒,𝑖|𝜂𝑖  

 

Zone 1 
4.62 

4.73 0.04 
4.85 

Zone 2 
5.40 

5.49 0.13 
5.60 

Zone 3 5.81 5.88 1.22 

Zone 4 6.09 5.97 1.87 

Zone 5 6.49 6.50 0.24 

Zone 6 
5.31 

X X 
5.51 

Zone 7 7.20 7.40 2.84 

Zone 8 7.58 7.66 1.06 

Zone 9 6.01 6.15 2.27 

Zone 10 7.08 X X 

Zone 11 6.77 6.71 0.79 

Zone 12 
5.00 

4.94 1.13 
4.77 

Zone 13 5.62 x x 

3.4.3 Air flow estimation 

A typical calculation of FCU airflow includes the use of temperature sensors at air intake and 

exhaust and/or anemometers.  Both approaches %, used for straightforward measurement of the 

airflow, proved to be impractical due to highly variable accuracy dependent on the sensors 

installation position [25]. The calculation is additionally corrupted by dominant effects of 

temperature stratification or natural airflows. Here we propose the methodology for indirect 

measurement of the airflow by using an electrical energy meter and fan performance data from the 

catalogue. 
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𝑞a = 𝑓𝑒𝑙𝑥(𝑃𝑒𝑙),        𝑥 ∈ {L, M, H} (3-10) 

where 𝑃𝑒𝑙  is electric power consumed by the FCU fan. Since FCUs' air intake filters performances vary 

slowly over time, one electrical energy meter can be used to monitor electrical consumption of all 

FCUs connected to the same line or all FCUs placed on the same or couple of floors, offering thus 

more cost-effective solution to monitor the FCU performance over time. Figure 3.8 shows the 

functional dependence between the electrical energy consumption and FCU airflow for Trane FCC06. 

In Figure 3.9 the results of on-line monitoring of the FCU performance in Zone 7 are shown. Tests are 

performed by turning the high speed of the fan for two minutes during unoccupied hours. To see the 

impact of the air path blockage on, e.g. the chosen date of 11 October, the FCU air exhaust was 

blocked by placing the obstacle on approximately 70 % of the exhaust. The result is degradation of 

the airflow by approximately 11 %. Similar procedure is derived on-line based only on FCU 

operational data and information on its fan state by running disaggregation algorithms [30]. By 

performing the experiment, it is proved that the air flow does not deviate significantly from the 

nominal air floor rate listed in manufacturers' catalogue if there is no external impact blocking the air 

path. Thus, in the following subsections air flow is assumed to be constant and equal to the nominal 

value for each speed. 

 
 

Figure 3.8: Identified FCU electrical consumption model for 

Trane FCC06.. 

 

 
 

Figure 3.9: Air mass flow variation for 6 days period in 2017. 

 

3.4.4 Thermodynamic model estimation 

For the hydraulic model calculated as described in Section 3.2, the following identification of 

the thermodynamic FCU model can be performed on the normal operation FCU data. In most heating 

and cooling systems medium mass flow is controlled to a constant value while supply temperature is 

altered to meet the building thermal demand. To estimate 𝑈o = 𝑓(𝑞a, 𝑞w) the existing non-uniform 

distribution of the flow through the units is exploited. Water heat capacity 𝑐w and overall heat 

transfer coefficient 𝑈o for fixed air and medium mass flows are calculated by minimizing the squared 

error between the measured return medium temperature 𝑇wout,m  and the simulated one on a 

minute-time scale (3-11): (𝑈o∗, 𝑐w∗ ) = argmin𝑈o,𝑐w ‖ 𝑇w,𝑖out,m − 𝑇w,𝑖out‖2                       𝑠. 𝑡. 𝑞w,𝑖 = 𝜂𝑖 ⋅ 𝑞cal,(3 − 11).  (3-13) 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 Annex 1 – Zone prediction and estimation 
 

 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  29 
 

where 𝑈o ≔ {𝑈o0, 𝑈oL, 𝑈oM, 𝑈oH} is the set of fixed overall heat transfer coefficients for zero, low, 

medium and high speed defined as: 

𝑈o ≜ {  
  𝑈o0 for 𝑥 = 0,𝑈o𝐿 for 𝑥 = L,𝑈oM for 𝑥 = M,𝑈oH for 𝑥 = H. (3-13) 

Identified heat capacity of water 𝑐w∗  for a set of data containing 32 test runs in different zones during 

heating season 2015/2016, 2016/2017 and cooling season 2017 is shown in Figure 3.10. 

 
Figure 3.10: Estimated heat transfer coefficient. 

The effect of the latent heat during the cooling season is investigated by installing additional ZigBee 

humidity and pressure sensors in several zones. By monitoring the FCU performance during the 

cooling season of 2015, it is found that latent heat amounts for no more than 10 % of sensible heat. 

To avoid the need to install additional sensors in every zone, only sensible heat 𝑃a  is considered 

while 𝑃l is treated as a dynamic disturbance. Time responses of the identified model during a heating 

season, tested on the verification data with the same medium mass flow as the identification data 

set, are shown in Figure 3.11. Estimated heat capacity of the medium is considered by scaling the 

calorimeter power measurements with 𝑃cal∗ = 𝑃calm ⋅ 𝑐w∗𝑐w,cal − 𝑃d∗.  As it can be seen from the figure, the 

model successfully captures the FCU dynamics. 

 

Overall heat transfer coefficient function estimation 

During the cooling season thermodynamic performance of the floor mounted FCUs is downgraded. 

This is because cooled air tends to settle at the floor and may ``short-circuit" FCU air intake without 

mixing with the zone air. The estimated 𝑈o∗ values during the cooling season are thus much lower 

than expected. To deal with the problem, empirical correction coefficients  𝜀: = {𝜀L , 𝜀M, 𝜀H}  are 

introduced in the model to anticipate the effects of large vertical temperature stratification. During 

the heating season parameter 𝜀  is equal to one for all fan speeds. Physically meaningful 𝑈o relation 

dependent on the airflow 𝑞a  and mass flow 𝑞𝑤  is  [23],[24]: 

𝑈o(𝑞a, 𝑞𝑤) = 𝜀 ⋅ 𝑎 ⋅ 𝑞a𝑐1 + 𝑏 (𝑞a𝑞𝑤)𝑐  , (3-16) 

where 𝑎, 𝑏, 𝑐 and 𝜀  are parameters to be determined.  
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Figure 3.11. Identified FCU model response over the verification data set. 

Manufacturers' catalogue performance data usually cover the operating range with constant 𝑈o and higher medium mass flows while operating range of the on-site FCUs usually covers lower 

medium mass flows. To develop a model applicable over the entire operating range, the catalogue 

data are combined with real on-site measurements. Only sensible heat data from the catalogue is 

used.  The catalogue data, extracted from heating and cooling capacity tables of Trane FCC06 FCU 

consist of the stationary values of the sensible power data 𝑃acd  , supply 𝑇win,cdand return 𝑇wout,cd 

water temperature data and entering air temperature data 𝑇ain,cdfor low, medium and high speed. 

The overall heat transfer coefficient for every speed is thus calculated from the stationary condition 

(3-12) as: 

𝑈o𝑥 = 𝑃acd(0.5 ⋅ (𝑇win,cd + 𝑇wout,cd) − 𝑇ain,cd )  ,       𝑥 = {L, M, H} (3-16) 

The estimated functional dependence between the mass flows and the overall heat transfer 

coefficient for three non-zero fan speeds of Trane FCC06 unit is shown in Figure 3.12 with estimated  

correction coefficients 𝜀 listed in Table 3.7 and estimated unknown model parameters listed in Table 

3.8. 
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Figure 3.12: Overall heat transfer coefficient function. 

      

                                        Table 3.7: Cooling season correction coefficients 𝜺. 

Fan speed 𝒙 L M H 

Correction coefficients 𝜀𝑥 0.35 0.47 0.52 

 

       Table 3.8: Estimated 𝑼o(𝒒a, 𝒒𝒘) function parameters for Trane FCC06. 

Model parameters a b l 

Estimated values 751.496 0.082 0.900 

 

 

Standard preventive maintenance of FCUs within the living lab implies a change of air intake filters 

every two years. By running the identification procedure several times between 2015 and 2017, it is 

found that the filter dusting does not affect the airflow significantly. Airflow in all the tests was 

around the nominal airflow from the catalogue at pressure difference 0 Pa. Since the airflow does 

not deviate over time significantly (if there are no external impacts blocking the air path), it is 

reasonable to estimate the separate functional dependencies for all three fan speeds avoiding thus 

the need for knowing the exact information on the airflow, which is very convenient for the case 𝑥 = 0 when air flow information is unavailable.  For switched-off fan (𝑥 = 0) a FCU behaves as a 

normal radiator unit with a constant heat transfer coefficient: 𝑈o(𝑞w, 𝑥) = 𝐷, x = {0}, 𝑞w ≠ 0.  (3-18) 

By fixing the airflow information (3-16)  for non-zero fan speeds obtains the form: 

𝑈o(𝑞w, 𝑥) = 𝜀 ⋅ 𝐴1 + 𝐵 ⋅ 𝑞w−𝐶 ,     𝑥 = {L,M,H}. (3-18) 

Unknown parameter sets 𝐴:= {𝑎L, 𝑎M, 𝑎H} ,  𝐵:= {𝑏L, 𝑏M, 𝑏H}  and 𝐶:= {𝑐L, 𝑐M, 𝑐H}  and 

parameter 𝐷 are identified by running a simple non-linear least squares curve fitting in MATLAB  

[29].  Identified parameters for Trane FCC06 are shown in Table 3.9   with 𝑈o0 estimated to be 

equal to 5.30. Parameter set 𝐶 does not depend on the airflow so one common parameter for all 

three speeds is identified. The functional dependence 𝑈o(𝑞w, 𝑥) for three non-zero fan speeds of 

Trane FCC06 is shown in Figure 3.13. 
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Table 3.9: Identified parameters of overall heat transfer coefficient function for Trane FCC06. 

Model parameters/ 

Fan speed 𝒙 
A B C 

L 96.45 1.73 ⋅ 10−3 1.86 M 152.90 3.58 ⋅ 10−3 

H 201.80 5.40 ⋅ 10−3 

 

 
Figure 3.13. Heat transfer coefficients as a function of medium mass flow for fan coil type Trane FCC06. 

The final thermodynamic model of FCU is :  

�̇�wout = [− 𝑞w𝑚w − 𝑈o(𝑞w, 𝑥)2𝑚w𝑐w ] 𝑇wout + [𝑞w𝑚w − 𝑈o(𝑞w, 𝑥)2𝑚𝑤𝑐𝑤 𝑈o(𝑞w, 𝑥)2𝑚𝑤𝑐𝑤 ] [𝑇win𝑇ain], (3-19) 

 

Pa = 𝑈o(𝑞w, 𝑥)2 𝑇wout + [𝑈o(𝑞w, 𝑥)2 −𝑈o(𝑞w, 𝑥)] [𝑇win𝑇ain] (3-20) 

 

𝑈o(𝑞w, 𝑥) = { 𝐷 for 𝑥 = 0𝜀 ⋅ 𝐴1 + 𝐵 ⋅ 𝑞w−𝐶 for 𝑥 = {L, M, H}, (3-21) 

 𝑞w = 𝜂 ⋅ 𝑞cal. (3-22) 

3.5 Maximal thermal power with fixed mass flow and supply temperature 

Maximal thermal power of a FCU presents a physical limit of the available thermal energy when 

optimizing thermal energy inputs per zone. Operating sampling time of submodule for optimization 

of thermal energies per zones makes time constant of water inside FCU negligible, transforming (3-

11) to: 0 = 𝑞w𝑐w(𝑇win − 𝑇wout) − 𝑈o(𝑞w, 𝑥)(𝑇w − 𝑇ain), (3-23) 
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 from where analytical expression for calculation of return medium temperature 𝑇wout is expressed: 

𝑇wout = (𝑞w𝑐w −𝑈o(𝑞w, 𝑥)2 )(𝑞w𝑐w +𝑈o(𝑞w, 𝑥)2 ) 𝑇win + 𝑈o(𝑞w, 𝑥)(𝑞w𝑐w + 𝑈o(𝑞w, 𝑥)2 )𝑇ain. (3-24) 

 

From (3-24) maximal power is generated when high speed is on. By inserting (3-24) into (3-20) and 

defining 𝑥 = 𝐻 it follows: 

𝑃a,max(𝑞w) = 2𝑞w𝑐w𝑈o(𝑞w, 𝐻)2𝑞w𝑐w + 𝑈o(𝑞w, 𝐻) (𝑇win − 𝑇ain) 
 

(3-25) 
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4 Radiator identification submodule (Z.PE.2) 

A radiator is a type of heat exchanger designed to transfer heat from one medium to another for the 

purpose of heating or cooling. Regardless of its purpose (heating the environment or cooling the fluid 

supplied to it), it is always a source of heat to its environment. Although the term “radiator” suggests 

that radiation is the dominating process in heat transfer between the radiator and the environment, 

that is not correct. Regardless of their material of production and irrespective of their designs, the 

majority of radiators will heat the environment mostly through the mechanism of convection 

(approximately 80 % of the total heat transfer between the radiator and the environment), leaving 

the remaining 20 % to be emitted through radiation. 

 

 
Figure 4.1. Steel panel radiator 

 
Figure 4.2. Central heating system 

 

Design, material, size and colours of radiators can be different. Comparisons between different 

radiators are based on volume and projection area, weight, thermal inertia, ease of installation, 

water volume, life, corrosion, aesthetic, security, the required amount of heating surface, pressure 

resistance and price. It is possible to classify radiators according to construction material as cast iron 

radiators, steel radiators and aluminum radiators. Panel radiators, panel radiators with extended 

surfaces, convectors, low surface temperature radiators and towel radiators are examples of steel 

radiators. Even though steel is the more common material in radiators, aluminum is also used in the 

production of radiators. Better heat conductivity properties of aluminum 4 improves heat dissipation 

rate. Short heat-up period and immediate response to desired temperature make In addition, better 

corrosion resistance is achieved by using aluminum item since formation of surface layer of 

aluminum oxide when exposed to air. Reduced load of aluminum radiators ease to place them [31]. 

This article presents the mathematical model of a panel radiator that is used to heat buildings. 

Differential equations are used to describe the heat transfer processes inside the radiator and 

between the radiator and the environment. Also, experimental setup for identification of a radiator 

model is described.   

The submodule interface is defined in the following tables (Table 4.1, Table 4.2). 
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4.1 Submodule inputs 

 

Table 4.1. Required inputs for radiator identification submodule. 

Variable name Notation Description 

Historical temperature profile from zone 

(minute-scale of the sampling time) 

𝑇𝑧 

 

Data taken from the database 

Historical profile of valve actuation in the 

zone (minute-scale of the sampling time)  
𝑉𝑥  

Data taken from the database 

Historical temperature profile of the 

supply medium from a calorimeter 

(minute-scale of the sampling time) 

𝑇𝑤𝑐𝑎𝑙  Data taken from the database  

Historical temperature profile of the 

return medium from a calorimeter 

(minute-scale of the sampling time) 

𝑇return,cal  Data taken from the database (might 

not be needed, but will be available) 

Historical profile of the flow from a 

calorimeter (minute-scale of the sampling 

time) 

𝑞cal Data taken from the database 

Historical profile of energy (power) 

recorded on the calorimeter (minute-

scale of the sampling time) 

𝐸cal (𝑃cal)  Data taken from the database 

Historical temperature profile from the 

return medium temperature sensor on a 

fan coil (minute-scale of the sampling 

time) 

𝑇w𝑜𝑢𝑡 Data taken from the database 

Historical temperature profile from the 

supply medium temperature sensor on a 

fan coil (minute-scale of the sampling 

time) 𝑇w𝑖𝑛 

(optional) If not existing, 

measurement of the temperature on 

the calorimeter should be used, and 

additionally a characteristic of the 

temperature drop along the pipeline 

from the heat loss model should be 

used 

 

4.2 Submodule outputs 

 

Table 4.2. Outputs of the radiators identification submodule. 

Variable name Notation Description 

Parameters of the radiator model  

 

𝑎, 𝑏, 𝐶, 𝑈0, 𝑛 

 

Parameters needed for calculation of 

maximum energy for the MPC 

module, for the interface submodule 

functioning, and for calculation of 

energy inputs for identification of a 

simplified building dynamic model 

and for on-line estimation of its 

states and disturbances  
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4.3 Mathematical model of a panel radiator 

A model is a representation of reality that retains its salient features. The first task is to identify the 

system under study. Modelling usually implies approximating the real geometry to an ideal geometry 

(assuming perfect planar, cylindrical or spherical surfaces, or a set of points, a given interpolation 

function, and its domain), approximating material properties (constant values, isotropic values, 

reference material values, extrapolated values), and approximating the heat transfer equations 

(neglecting some contributions, linearizing some terms, assuming a continuum media, assuming a 

discretization, etc.). Modelling material properties introduces uncertainties because density, thermal 

conductivity, thermal capacity, emissivity, etc., depend on the base materials, their impurity 

contents, bulk and surface treatments applied, actual temperatures, the effects of aging, etc. In most 

cases materials properties are modelled as uniform in space and constant in time for each material, 

but the worthiness of this model and the right selection of the constant-property values, requires 

insight [32]. 

For radiators, there are three mechanisms of heat transfer that need to be described with 

mathematical equations: 

1. Forced heat convection from fluid (water in the tube) to the inner wall of the tube 

2. Heat conduction through the tube wall 

3. Coupled radiation and natural convection from the outer tube wall to the outside fluid (air) 

 

The following assumptions are made: 

 Since the water inlet and outlet temperature differ significantly, the arithmetic average of 

those two temperatures was taken as the water temperature in the radiator: 

𝑇wav = 𝑇win + 𝑇wout2 , (4-1) 

 No heat losses from the room to the external environment were taken into account 

 System is hydraulically balanced 

The heat transfer processes are described by the following differential equation: 

𝑚𝑤𝑐𝑤 𝑑𝑇wout𝑑𝑡 = 𝑞w𝑐𝑤(𝑇win − 𝑇wout) − 𝑈0(𝑇wav − 𝑇z )𝑛,     (4-2) 

 

or: 𝑑𝑇wout𝑑𝑡 = 𝑞w𝑚𝑤 (𝑇win − 𝑇wout) − 𝑈0𝑚𝑤𝑐𝑤 (𝑇wav − 𝑇z )𝑛 ,  
 

 

 

(4-3) 

 

where 𝑚𝑤 is the mass of water inside the radiator, 𝑐𝑤 is the specific heat capacity of the water, qw is 

the medium mass flow of the water through the radiator and Tz is the room temperature. 𝑃𝑤 =𝑞w𝑐𝑤(𝑇win − 𝑇wout) represents the thermal power on the water side. 𝑃t,r = 𝑈0(𝑇wav − 𝑇z )𝑛 represents 

the thermal power of a radiator affecting the zone where U0 is the overall heat transfer coefficient 

and n is the radiator exponent describing the type of the radiator. For standard panel radiators the 
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value of n is around 1.33. This is a dynamic model of a water radiator when 𝑞𝑤 ≠ 0. In the 

identification process the unknown parameters will be 𝑎 = 1𝑚𝑤, 𝑏 = 𝑈0𝑚𝑤𝑐𝑤 and n, so the equation can 

be written in the following form: 𝑑𝑇wout𝑑𝑡 = 𝑎𝑞𝑤(𝑇win − 𝑇wout) − 𝑏(𝑇wav − 𝑇z)𝑛,     (4-4) 

Through the process of identification the values of a, b and n will be estimated, but there is still 

unknown parameter 𝑈0 that needs to be identified because the transmitted thermal power between 

the water side and the air in the room needs to be known for the energy input control. It will be 

identified using the steady state values of transmitted thermal power 𝑃t,r. The whole identification 

process is described in the section 4.5.  

  

It is also important to take into account situation where there is no medium mass flow (𝑞𝑤 = 0). 
Values of medium mass flow and inlet water temperature are inserted in the equation (𝑞𝑤 = 0  and 𝑇win = 0) and dynamic model for the situation with no medium mass flow is: 

 𝑑𝑇wout𝑑𝑡 = − 𝑈0𝑚𝑤𝑐𝑤 (𝑇wout − 𝑇z)𝑛,     (4-5) 

or  𝑑𝑇wout𝑑𝑡 = −𝑏(𝑇wout − 𝑇z)𝑛,     (4-6) 
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4.4 Radiator model simulation in Simulink 

Detailed water radiator model has been made and simulated in Simulink. Simulink is a block diagram 

environment for multidomain simulation and model-based design. It supports system-level design, 

simulation, automatic code generation, and continuous test and verification of embedded systems. 

Simulink provides a graphical editor, customizable block libraries, and solvers for modeling and 

simulating dynamic systems. It is integrated with MATLAB, enabling you to incorporate MATLAB 

algorithms into models and export simulation results to MATLAB for further analysis. 

The heat transfer processes in the radiator and between the radiator and the environment have 

been modelled by using the following equations: 

𝑚𝑤𝑐𝑤 𝑑𝑇wout𝑑𝑡 = 𝑞w𝑐𝑤(𝑇win − 𝑇wout) − 𝑈w(𝑇wav − 𝑇r ),        (4-7) 

𝑚𝑟𝑐𝑟 𝑑𝑇𝑟𝑑𝑡 = 𝑈w(𝑇wav − 𝑇r ) − 𝑈𝑎(𝑇𝑟 − 𝑇𝑧)𝑛 
 

(4-8) 

 

where 𝑚𝑤 is the mass of water inside the radiator, 𝑐𝑤 is the specific heat capacity of the water, 𝑚𝑟 is 

the mass of the radiator skin, 𝑐𝑟 is the specific heat capacity of the radiator, qw is the medium mass 

flow of the water through the radiator, ma is the mass of the air in the room, ca  is the specific heat 

capacity of the water, Tr  is the radiator skin surface temperature and Tz is the room temperature. 

This detailed mathematical model of a radiator has been taken as a representation of a real radiator 

and was simulated in Simulink. System inputs are inlet water temperature 𝑇win, medium mass flow qw 

and room temperature Tz. System outputs are outgoing radiator temperature 𝑇wout and radiator skin 

surface temperature Tr.  

For the purpose of identification, the system inputs values have been changed over time during the 

simulation to obtain the reliable data of system behaviour with different values so the system 

parameters could be found more accurately. The medium mass flow and inlet water temperature 

never changed their values at the same time so that their effect on outgoing water temperature 

could have been seen clearly. The change in either one of these two variables occurred every 25 

minutes during the simulation. The inlet water temperature has changed from 62 °C to 75 °C and 

medium mass flow has changed from 0.025 kg/s to 0.038 kg/s. Continued state-space model of one 

room in FER building was used to get the room temperature Tz. Inputs in that steady-state model 

were outside temperature and power transmitted between the radiator and the air in the room, 

while output was temperature in that room which was then used as an input in radiator model.  The 

graphs of those values are shown on the bottom pictures.      
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 Figure 4 .4.3. Dynamic radiator model in Simulink 

 

 

 

 

Figure 4.4. Dynamic model in Simulink 
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Figure 4.5. Temperature of the water inlet during the 

simulation. 

 

  

 
Figure 4.6. Medium mass flow during the simulation. 

 

 

Figure 4.7. Temperature of the radiator outgoing water. 

 

Figure 4.8. Temperature of the radiator skin surface during 

the simulation. 

 

 

 

   Figure 4.9. Room temperature during the simulation. 
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4.5 System identification 

The nonlinear optimization procedure was carried out in MATLAB in order to estimate the unknown 

parameters a, b and n. After that the parameter U0 is identified by using the steady-state approach. 

In chapter 4.3. an assumption has been made that the water temperature inside the radiator is the 

arithmetic average of water inlet temperature and water outlet temperature and that value has also 

been used in detailed mathematical model of a radiator in Simulink, but with real measurements on 

radiators in pilot buildings that temperature will maybe significantly differ from arithmetic average of 𝑇winand 𝑇wout. To avoid errors, another parameter C is added to identification procedure and it is used 

to find out how much does each one of these two water temperatures affect the water temperature 

inside the radiator. The equation (4-4) is now written in the following form: 𝑑𝑇wout𝑑𝑡 = 𝑎𝑞𝑤(𝑇win − 𝑇wout) − 𝑏( 𝐶𝑇win + (1 − 𝐶)𝑇wout − 𝑇𝑧)𝑛,     (4-9) 

Since we used the arithmetic average of water inlet temperature and water outlet temperature in 

Simulink model, there is no need for parameter C to be used now because we know that its value is 

0.5, but it will be used on real radiator measurement to eventually improve the identification. 

The equation (4-10) is used to calculate the minimized squared error between the measured 

temperature of outgoing water from the Simulink simulation and simulated temperature of the 

outgoing water in MATLAB environment.                            min     𝑎,𝑏,𝑛,𝐶     ‖ 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑇𝑠𝑖𝑚‖2  .    (4-10) 

By the identification process the values of unknown parameters have been obtained and they are 

shown in the Table 4.5. 

Table 4.5: Estimated radiator parameters. 

Model parameters a b n          C 

Estimated values 0.105
 

2.259·10
-4

 1.163 0.500 

 

 

           Figure 4.10. Measured and identified outgoing water temperature . 
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After the parameters a,b,n and C have been found, there is still unknown value of parameter U0 that 

needs to be estimated, since it has been hidden in the parameter b (𝑏 = 𝑈0𝑚𝑤𝑐𝑤) and thus it can not be 

estimated directly. The steady-state approach is used to find out U0. In steady state there is no 

change in 𝑇wout  and the equation (4-2) is simplified: 0 = 𝑞𝑤𝑐𝑤(𝑇w𝑖𝑛 − 𝑇wout) − 𝑈0(𝑇wav − 𝑇𝑧)𝑛,     (4-11) 

In this case, power on the water side Pw is equal to the power on the air side 𝑃t,r: 𝑞𝑤𝑐𝑤(𝑇w𝑖𝑛 − 𝑇w𝑜𝑢𝑡) = 𝑈0(𝑇wav − 𝑇𝑧)𝑛,     (4-12) 

The heat transfer coefficient U0 can now be written as: 

𝑈0 = 𝑞𝑤𝑐𝑤(𝑇w𝑖𝑛 − 𝑇w𝑜𝑢𝑡) (𝑇wav − 𝑇𝑧)𝑛      (4-13) 

 

Since all the other values in equation are known and n is already estimated, U0 can now be identified. 

10 steady state values of water-side power Pw have been taken and divided by  (𝑇wav − 𝑇𝑧)𝑛 to get 10 

values of U0 and then the average value is taken as U0. Air-side power 𝑃t,r is now known and it is 

compared to water side power measured in Simulink. The comparison is shown on picture 4.5. The 

biggest difference between these two variables is 14 Watts. 

Table 4.6: Estimated radiator parameter. 

Model parameter U0 

Estimated value 9.17
 

 

 

Figure 4.11. Measured water-side power and identified air-side power. 
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When unknown parameters are identified, the thermal energy aquired by zone actuators can be 

calculated using the right-hand side part of equation (4-6):  

∫ 𝑈0(𝑇wav − 𝑇𝑧)𝑛𝑑𝑡𝑇𝑑
0 . (4-14) 

 

This equation becomes simpler for the situation with no medium mass flow (𝑞𝑤 = 0): 

∫ 𝑈0(𝑇wout − 𝑇𝑧)𝑛𝑑𝑡 .𝑇𝑑
0  (4-15) 
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4.6 An experimental setup for identification of a radiator model 

The measurements that need to be performed in order to make identification of the radiator models 

installed in pilot buildings (HEP building in Zagreb, Primary school and Sports centre in Idrija, school 

in Strem) are described in this section. There are five parameters that are crucial for the 

identification: Tz (temperature in the the room), 𝑇w𝑐𝑎𝑙 (temperature of the water at the duct inlet), 𝑇wout (temperature of the radiator outgoing water), 𝑞wcal  (overall mass flow of the water through the 

duct) and 𝐸t,r (overall energy consumption). 

Supply and return water temperature, overall flow of the water and overall energy consumption can 

be measured by calorimeter. These devices can be put on each radiator in the building to measure 

the required parameters, but since they are rather expensive the optimal would be to reduce their 

number as much as possible by modifying the way of measurement. For example, some of the 

buildings have two major heating loops per floor (north-south side or east-west side) and it will be 

enough to put two calorimeters on each floor, one for each loop. The assumption is that radiators 

are parallel connected and that pressure drop is constant within the whole system. If all radiators are 

of the same type, then the water mass flow of each radiator qw is equal to water mass flow of the 

loop 𝑞wcal , that is measured by calorimeter, divided by the number of radiators connected to the 

loop.            

 

 

Figure 4.14. Required measurements for one floor of the building. 

Also, all radiators should be equipped with sensors measuring the temperature of the radiator 

outgoing water 𝑇wout and temperature of the water at the radiator inlet 𝑇win. If there is no sensor for 

measurement of 𝑇win, measurement of the temperature on the calorimeter should be used, and 

additionally a characteristics of the temperature drop along the pipeline should be assessed.  

In every zone there should be a temperature sensor measuring the air layer in the room Tz and that 

sensor has to be placed on height that is at least the 50 % of the height between the floor surface 

and the ceiling.  
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 Algorithm 1: Identification test algorithm 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

 

INITIALIZATION PHASE 

- Sensor calibration if necessary 

TEST PHASE 

- Shut down all units connected to the same duct or assure their constant operation  

- Run the identification procedure on a particular unit 

- Data acquisition 

DATA PROCESSING PHASE 

- radiator model identification (finding a,b, n and C - Eq.4-9) 

- overall heat transfer coefficient U0 estimation (Eq. 4-13) 

- calculate air-side power Pt,r  

 

Heat losses  

Since the temperature at the radiator inlet will not be measured directly, the temperature measured 

by calorimeter at the duct inlet will be used. Temperature of the water at the radiator inlet is equal 

to the temperature of the water at the duct inlet that is measured by calorimeter reduced by total 

temperature heat losses occurred due to transmission of the medium through the pipeline [4].  The 

following measuring procedure should be done to determine those losses: On the first day of 

measurement the inlet water temperature should be set on, for example, 60 °C and the water 

temperature on the radiator inlet should be observed. The next day that temperature could be set on 

80 °C and the same measuring procedure should be done. Two measurements will be enough to 

make linear approximation of heat losses in form Tloss=aTw,i,cal +b.  In ideal case, if the pipes were 

perfectly isolated, both temperatures would be the same. The pipes in each of the pilot buildings are 

unfortunately not isolated, so 𝑇w𝑖𝑛 will differ from 𝑇wcal. Main goal will be to determine if those two 

temperatures differ significantly, or that difference can be neglected and the 𝑇wcal can be taken as the 

radiator inlet temperature.  
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5 Floor heating identification submodule (Z.PE.3) 

A floor heating/cooling is one another controlled type of heating or cooling application. It achieves 

thermal comfort through conduction, convection and radiation. Floor heating/cooling has been 

widely used in buildings with the advantage of uniform room temperature distribution.  Other 

important advantage of the floor heating/cooling is that it can use low energy resources such as solar 

hot water, heat pumps and condensing boilers. 

In the design and the setup of the floor heating/cooling system, surface temperature is one of the 

most important parameters to be considered. In order to avoid condensation, surface temperature 

should be always higher than the temperature of the surrounding air at the dew point. Based on this 

conclusion, it is recommended that the surface temperature should be kept between 19°C and 29°C 

[35]. 

There are two kinds of floor heating/cooling constructions. One is called homogenous and the other 

multilayer floor system [36]. With the homogenous floor just one type of material (concrete, gypsum 

cement or mortar) is placed above the water pipes [37]. The material of surface layer in multilayer 

floor can be wood, tile or some other material.  

 

Figure 5.1. Multilayer floor heating/cooling system.  
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5.1 Submodule inputs 

 

The submodule interface is defined in the following tables (Table 5.1, Table 5.2). 

Table 5.1. Required inputs for floor heating identification submodule. 

Variable name Notation Description 

Historical temperature profile from zone 

(minute-scale of the sampling time) 

𝑇𝑧 

 

Data taken from the database 

Historical profile of valve actuation in the 

zone (minute-scale of the sampling time)  
𝑉𝑥  

Data taken from the database 

Historical temperature profile of the 

supply medium from a calorimeter 

(minute-scale of the sampling time) 

𝑇w𝑐𝑎𝑙  Data taken from the database  

Historical temperature profile of the 

return medium from a calorimeter 

(minute-scale of the sampling time) 

𝑇return,cal  Data taken from the database (might 

not be needed, but will be available) 

Historical profile of the flow from a 

calorimeter (minute-scale of the sampling 

time) 

𝑄cal Data taken from the database 

Historical profile of energy (power) 

recorded on the calorimeter (minute-

scale of the sampling time) 

𝐸cal (𝑃cal)  Data taken from the database 

Historical temperature profile from the 

return medium temperature sensor on a 

floor heating system (minute-scale of the 

sampling time) 

𝑇w𝑜𝑢𝑡 Data taken from the database 

Historical temperature profile from the 

supply medium temperature sensor on a 

floor heating system (minute-scale of the 

sampling time) 𝑇w𝑖𝑛 

(optional) If not existing, 

measurement of the temperature on 

the calorimeter should be used, and 

additionally a characteristic of the 

temperature drop along the pipeline 

from the heat loss model should be 

used 

 

5.2 Submodule outputs 

 

Table 5.2. Outputs of the floor heating identification submodule. 

Variable name Notation Description 

Parameters of the floor heating/cooling 

element model  

 

𝐴fh, 𝐵fh, 𝐶fh, 𝐷fh 

Parameters needed for calculation of 

maximum energy for the MPC 

module, for the interface submodule 

functioning, and for calculation of 

energy inputs for identification of a 

simplified building dynamic model  
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5.3 Thermodynamic floor heating/cooling unit model 

For the purpose of subsequent developments it is assumed that the water pipes are placed above 

the insulation layer. Concrete layer is then placed above the water pipes and finally a tile surface 

layer is applied on the top. Mathematical model of a system will be written and reviewed from the 

side of the outgoing water temperature circulating through the pipes. 

 
Figure 5.2. Vertical cross-section of a multilayer floor heating/cooling. 

Heat transfer within the system occurs through convection, conduction and the radiation of the heat 

[39].  First the heat is convected from the water circulating in the pipe to the inner wall of the pipe.  

After that the heat is conducted through the pipe material and through the concrete layer above the 

pipes. The final stage of the heat transfer into the zone is done through the convection and radiation 

of the heat from the surface layer to the air layer in the room. 

The differential equation for the temperature of the water in the pipe 𝑇𝑤,𝑜𝑢𝑡 can be written in the 

following form : 

𝑚𝑤𝑐𝑤 𝑑𝑇𝑤𝑜𝑢𝑡𝑑𝑡 = {𝑄𝑤𝑐𝑤(𝑇𝑤𝑖𝑛 − 𝑇𝑤𝑜𝑢𝑡) − 𝑈(𝑇𝑐 − 𝑇𝑧)𝑛        𝑄𝑤 ≠ 0,𝑈(𝑇𝑐 − 𝑇𝑧)𝑛                                                  𝑄𝑤 = 0, (5-1) 

 

where 𝑚𝑤 and 𝑄𝑤 are respectively mass of the water inside the pipe and medium mass flow of the 

water through the pipe. Parameter 𝑐𝑤  represent specific heat capacity of the water. 𝑇𝑤𝑜𝑢𝑡 stands for 

the temperature of the outgoing water from the pipes in the room and 𝑇𝑤𝑖𝑛  stands for the 

temperature of the inlet water going through the pipes in to the room. 𝑇𝑧 stands for the temperature 

of the air in the room(zone) and 𝑇𝑐 stands for the temperature of the concrete layer above pipes of 

the floor heating/cooling system.  

When we look the equation (5-1) from the energy perspective we can see that the first part of the 

right hand side of the equation represents the amount of energy inserted in to the system(concrete 

layer) whereas the second part represents the amount of energy that is transmitted from the 

concrete layer to the air in the room(zone). In that perspective the parameter 𝑈 stands for the heat 

transfer coefficient between the concrete and air in the zone. 

Looking from the thermodynamical perspective of the floor heating/cooling system one can surely 

notice that due to the physical properties of the pipes the temperature of the outgoing water 𝑇𝑤,𝑜𝑢𝑡 
is never going to be greater than the temperature of the concrete layer 𝑇𝑐  above the pipes. More or 

less, these two will be very similar. Based on this assumption we can now rewrite the equation (5-1): 
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𝑚𝑤𝑐𝑤 𝑑𝑇𝑤𝑜𝑢𝑡𝑑𝑡 = {𝑄𝑤𝑐𝑤(𝑇𝑤𝑖𝑛 − 𝑇𝑤𝑜𝑢𝑡) − 𝑈(𝑇𝑤𝑜𝑢𝑡 − 𝑇𝑧)𝑛        𝑄𝑤 ≠ 0,𝑈(𝑇𝑤𝑜𝑢𝑡 − 𝑇𝑧)𝑛                                                 𝑄𝑤 = 0, (5-2) 

 

From mathematical and identification point of view the equation (5-2) is much less complicated for 

the identification procedure in comparison with the equation (5-1).  The temperature of concrete 

layer 𝑇𝑐  is not going to be available for the identification procedure in pilot building in Strem, Austria. 

Now we can write the final differential equation of our model with parameters a,b and n which can 

be seen in the following equation. 𝑑𝑇𝑤𝑜𝑢𝑡𝑑𝑡 = 𝑎𝑄𝑤(𝑇𝑤𝑖𝑛 − 𝑇𝑤𝑜𝑢𝑡) − 𝑏(𝑇𝑤𝑜𝑢𝑡 − 𝑇𝑧)𝑛 (5-3) 

 

Where a stands for the relation 1/𝑚𝑤 , b stands for the relation U/𝑚𝑤𝑐𝑤 . Three unknown 

parameters a,b and n will later be optimized and identified with the help of the MATLAB. 

5.4 Model simulation in IDA ICE software 

The floor heating/cooling system model has been developed and simulated for the purposes of 

parameter identification in IDA ICE software. One can surely notice that the heat losses in the 

mathematical model equations are neglected so the simulated zone (room) has been constructed 

with minimal losses to the environment. The dimensions of the test room that was constructed in 

IDA ICE software were 4 meters in length, 4 meters in width and 3 meters in height.   

The floor heating system in IDA ICE software had a maximum heating power of 100 W/m
2   

with the 

pipes immersed into the concrete. The thickness of the concrete layer in the floor was set up to 10 

cm and the pipes were immersed in it on the depth of 5 cm.  Under the concrete layer the insulation 

layer was placed with the thickness of 10 cm. Above the concrete layer the floor coating layer 

approximately 1 cm thick was placed.  

The outputs of the floor heating/cooling simulation were temperature of the outgoing water 𝑇𝑤𝑜𝑢𝑡, 
inlet water temperature 𝑇𝑤𝑖𝑛, medium mass flow of the water 𝑄𝑤 and the temperature of the air in 

the zone 𝑇𝑧. The inputs to the simulation were water temperature 𝑇𝑤𝑖𝑛 and medium mass flow of the 

water 𝑄𝑤. These inputs were adjusted according to Figure 5.3 and Figure 5.4. The simulation has been 

carried out for 119521 samples with the sampling time of 1 minute. 
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Figure 5.3. Inlet water temperature 𝑻𝒘𝒊𝒏 during the simulation. 

 
Figure 5.4. Medium mass flow 𝑸𝒘 during the simulation 

The outputs of the floor heating/cooling simulation were temperature of the outgoing water 𝑇𝑤𝑜𝑢𝑡 
and the temperature of the air in the zone 𝑇𝑧. These outputs are shown in Figure 5.5 and Figure 5.6. 

 
Figure 5.5. Mean air temperature in the zone (room). 
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Figure 5.6. Temperature of the outgoing water during the simulation. 

 

5.5 Thermodynamical model parameter estimation 

In order to estimate the unknown parameters 𝑎 , 𝑏 and 𝑛 from the equation and (5-3) the 

nonlinear optimization procedure in the MATLAB environment has to be applied based on the 

simulated data from the IDA ICE software simulation. 

                           min     a,𝑛,𝑏     ‖𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑇𝑠𝑖𝑚‖2 . (5-4) 

The equation (5-4) calculates the minimized squared error between the measured temperature of 

outgoing water from the IDA ICE simulation and simulated temperature of outgoing water in 

MATLAB environment. Time response of the simulated model outgoing water temperature with 

respect to the measured values of the outgoing water temperature can be seen in Figure 5.7. 

 

Figure 5.7. Measured outgoing water temperature compared to the one simulated with the identified parameters. 

We can see that the simulated time response (blue line) of the outgoing water for the optimized 

parameters truly well represents the measured (red line) data from the simulation.  This nonlinear 

optimization problem has been solved in MATLAB environment giving the outputs described as 

parameter 𝑎 , 𝑛 and b. This problem has the possibility to be solved in MATLAB using fminsearch or 

fmincon command.  These parameters are given by the following values: 
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𝑏 = 0.0250, 𝑛 = 1.055, 𝑎 = 1.25  
As it can be seen from the equation (5-3) the parameter U can only be optimized together with 𝑚𝑤 and 𝑐𝑤  where the U parameter is going to be in the numerator and the 𝑚𝑤𝑐𝑤  is going to be in 

the denominator. So using the optimization methods in MATLAB it is possible that the real value of U 

will not be properly  found due to the dependency on the parameters 𝑚𝑤 and 𝑐𝑤. 

In order to fix this problem by finding the right value of 𝑈 so that the energy transmitted in to the 

zone could be calculated we need to apply the following procedure. 

First thing that needs to be done is to find the points of the energy transmitted from the water in the 

steady state. These points can be found when the energy transmitted from the water is equal to the 

energy transmitted from the concrete on the air in the zone (room). Since we have 5 transition states 

there will be 5 points in steady state where the water side energy is equal to the air side energy. The 

steady state where the medium mass flow is set to 0 will not be taken in to account. These points are 

easily read from the energy graphs derived from the simulation in IDA ICE software. These energies 

can be seen on the figure 5.8. and 5.9. 

 

Figure 5.8. Measured energy transmitted from the water during the simulation. 
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Figure 5.9. Measured energy transmitted on to the air in the zone during the simulation. 

 

As we have now these 4 points of steady state energies we now have to calculate the heat transfer 

coefficient for each of these steady state by relying on the following equation: 

𝑈 = 𝑃𝑠𝑠(𝑇𝑤𝑜𝑢𝑡 − 𝑇𝑎𝑖𝑟)𝑛 (5-5) 

  

where 𝑃𝑠𝑠 represents the energy points in 4 steady states. With the help of the equation (5-5) we 

now can calculate the average heat transfer coefficient U from the 4 steady states and use it to 

calculate the thermal energy given to the air in the zone. The average value of U calculated from the 

equation (5-5) is 75.5 W/K. 

We now have needed parameter values and we are able to calculate the thermal energy acquired by 

zone actuators using the right hand side part of equation (5-2): 

∫ 𝑈(𝑇𝑤𝑜𝑢𝑡 − 𝑇𝑎𝑖𝑟)𝑛𝑑𝑡.𝑇𝑑
0  (5-6) 

For easier computation can the outgoing temperature 𝑇𝑤𝑜𝑢𝑡 at the outlet of the actuator be lineary 

interpolated. 

With the optimized parameter n from the equation (5-4) and with the parameter 𝑈 from the 

equation (5-5),they can be inserted in to equation (5-6) so that the energy given to the air in the zone 

(room) can be calculated and compared with the energy given to the air from the IDA ICE software 

what can be seen in Figure 5.10. 

 

Figure 5.10.Calculated energy transmitted to the air compared to the one measured from the IDA ICE software. 

 

As it can be seen from the Figure 5.10. the blue line that represents the energy derived from IDA ICE 

software truthfully follows the green line that represents the energy calculated with the optimized 

parameters 𝑈 and n. 
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5.6 Outgoing water temperature prediction  

One of our main variables that is going to be measured on site is the outgoing water 

temperature 𝑇𝑤𝑜𝑢𝑡. In the pilot building for elderly care in Strem (Austria) there are some constraints 

that need to be assessed regarding the on site measurements.  

The floor heating/cooling system in building for elderly care in installed in a way that outgoing water 

from two or more zones in a building is mixed before it can be measured with a sensor. This in a way 

complicates the procedure for the identification because mathematical model for a particular zone 

relies completely on the 𝑇𝑤𝑜𝑢𝑡 measurement from the zone that is being considered. 

For this reason a new building model in IDA ICE software has been created with two separate zones 

(rooms) with the installed floor heating/cooling systems. The dimensions of the zones were the same 

(4m x 4m x 3m) and the floor heating/cooling systems with the power of 100 W were installed into 

the each room. In order to represent more truthfully our real system in Strem, a fluid mixing element 

is added to our IDA ICE simulation software project. This fluid mixing element is created outside the 

zones (rooms) so that the two outgoing pipes from each zone should be the input pipes to this 

element. Since we can measure now the outgoing water temperatures from the each zone and the 

water temperature going from the fluid mixing element, it is possible to find the mathematical 

relation that could estimate outgoing water temperature from the each zone as a function of zone 

mass flows and temperature going from the fluid mixing element.  

 

Figure 5.11. Schematic of fluid mixing principle in IDA ICE software 

As we can see on the Figure 5.8., the outgoing water temperatures (𝑇𝑤𝑜𝑢𝑡1and 𝑇𝑤𝑜𝑢𝑡2) from the Zone 1 

and Zone 2 are not going to be measured but will have to be estimated. The temperature of the 

outgoing water from the fluid mixing element 𝑇𝑤𝑜𝑢𝑡 is going to be measured.  

First thing that we are going to do is to set the medium mass flow in each room to maximum an then 

we are going to measure the water temperature from a fluid mixing element. In a real time system 

we will not be able to measure 𝑇𝑤𝑜𝑢𝑡1 and 𝑇𝑤𝑜𝑢𝑡2 but in IDA ICE simulation these values will be 

accessible. 

The equation (5-7) is going to be used to evaluate outgoing water temperatures in each zone. 
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𝑇𝑤𝑜𝑢𝑡 = 𝑄𝑤1𝑇𝑤𝑜𝑢𝑡1 + 𝑄𝑤2𝑇𝑤𝑜𝑢𝑡2𝑄𝑤1 + 𝑄𝑤2  (5-6) 

 

where subscripts 1 and 2 represents zones (rooms) 1 and 2 created and simulated in IDA ICE. After 

the measuring the 𝑇𝑤𝑜𝑢𝑡 with the maximum medium mass flows 𝑄𝑤1 and 𝑄𝑤2 we are now going to 

set the mass flow in one zone to minimum value or 0. This way we are going to be able to calculate 

the outgoing water temperature for zone (room) where the medium mass flow is not 0. The same 

can be done for the other room. 

 

 

 

 

 

 

 

6 Heat disturbance prediction submodule (Z.PE.6) 

Submodule for prediction of the heat disturbance evolution per zone. 

6.1 Submodule inputs 

Table 6.1: Required inputs for heat disturbance prediction submodule. 

Variable name Variable annotation Variable description 

Estimated heat disturbance in 

zone 
𝐸d 

Profile of the estimated heat 

disturbance in the past needed 

for off-line model tuning; 

recent values needed for on-

line execution 

Weather measurements 

UNIZG-FER pilot site: 𝑇env, 𝐼𝑑𝑖𝑓𝑓ℎ , 𝐼𝑑𝑖𝑟n  

Remaining pilot sites: 𝑇env, 𝐼gloℎ , 𝐼glot  

Measured weather variables:  

temperature, diffuse 

horizontal and direct normal 

irradiance (UNIZG-FER site),  

global horizontal and tilted 

global irradiance (remaining 

sites). 

Weather predictions (𝑇env)N, (𝐼dirn )N, (𝐼diffh )N 

Forecasted weather variables 

(temperature, direct normal 

and diffuse horizontal 

irradiance). 
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Time indicators 𝜏 

Variables representing time of 

the day, time of the week and 

day of the year. Calculated 

from current and historical 

datetimes. 

6.1.1 Solar irradiance data 

Depending on the availability of solar irradiance measurements on different pilot sites throughout 

the project, two separate sets of weather measurements inputs are used. 

 On the UNIZG-FER pilot site, where direct normal and diffuse horizontal irradiance measurements 

are available, they are used as submodule inputs and paired with the same forecasted variables 

during submodule operation.  

Due to high costs of direct and diffuse irradiance sensors other pilot sites provide measurements of 

global horizontal and tilted global irradiations which are then used as submodule inputs. Since 

measured and forecasted irradiances are now different, during submodule operation,  forecasted 

direct and diffuse irradiance, solar angles (obtained through the use of Pysolar python library), 

geographical pilot site data and current datetime, are used for calculation of global horizontal and 

tilted global irradiances thus matching the measured and forecasted irradiance variables. 

 

6.2 Submodule outputs 

Table 6.2: Outputs of the heat disturbance prediction submodule. 

Variable name Variable annotation Variable description 

Prediction model parameters 

(for off-line operation of the 

submodule) 

𝜃𝑑  
Needed for on-line operation 

of the submodule. 

Predicted heat disturbance 

evolution per zone (for on-line 

operation of the submodule) 

(𝐸d)N 
Needed for the MPC module 

on the zones level. 

6.3 Methodology 

Based on a detailed description of artificial neural networks (ANN) given in [36], in the following 

sections a condensed description of ANNs structures and learning algorithms is given, together with a 

description of prediction module structure and operation schemes. 

6.3.1 Artificial neural networks 

Understanding of the human brain functioning and its learning and adaptation abilities made 

researchers try imitating its structure in order to imitate its capabilities in the computer systems. The 

basic element of the brain is a neural cell or neuron. Human brain contains 10
11

 neurons 

interconnected in the network with more than 10
15

 links. Although the neuron structure is rather 
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simple, because of the immense number of links among them, a brain can perform the most complex 

operations. Schematic representation of a biological neuron is shown in Figure 6.1. 

Neuron is composed of the cell body (soma), axon and a number of dendrites. Front end of an axon is 

connected to the cell body and its back end is split in a large number of branches. These branches are 

terminated by telodendria with their terminal buttons that touch dendrites of the other neurons. The 

terminal buttons contain numerous small bags with transmitters. A small distance between a 

telodendron of one neuron and a dendrite of another is called a synapse. Axon of one neuron forms 

synaptic interactions with many other neurons. Impulses generated in the cell body travel through an 

axon to a synapse. Depending on the efficiency of each synaptic transfer, action potentials of 

different intensity come over dendrites to the cell body where they are then collected and 

processed. If their cumulative value is greater than the neuron sensitivity threshold, a cell body 

generates an action potential which is spread over the axon to the other neurons, and if it is lower, 

the neuron remains inactive and does not generate an action potential. From the signal processing 

perspective, neuron operation can be divided in synaptic operation which gives a certain relevance 

(weight) to each input signal and somatic operation which collects all the "weighted" input signals, 

and due to their cumulative values, generates or does not generate a signal which is transferred 

towards other neurons. 

Axon

Myelin sheath

Nucleus

Soma (cell body)

Dendrite
Telodendron

Synapse
Telodendron of 

the other neuron

 

Figure 6.1: Schematic representation of a biological neuron.  

6.3.1.1 Artificial neuron model 

Early research in the field of artificial neurons was published by McCulloh and Pitts in 1943 and 1947 

[37], [38]. Their model was based on a simple implementation of synaptic and somatic operations 

and was called a perceptron. Schematic representation of a perceptron is shown in Figure 6.2. 
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Figure 6.2: Schematic representation of a perceptron. 

Synaptic operation is performed by multiplying input signals 𝑥𝑖  with their weight coefficients 𝑤𝑖. Sum 

of all weighted signals is compared to a neuron sensitivity threshold 𝑤𝑛+1. If this sum is greater than 

a sensitivity threshold, nonlinear activation function 𝜓 generates an output signal 𝑦 equal to 1, and if 

it is less, neuron output is zero. 

Mathematically, a perceptron can be described using these relations: 

𝑣(𝑡) =∑𝑤𝑖(𝑡)𝑛
𝑡=1 𝑥𝑖(𝑡) − 𝑤𝑛+1, 
𝑦(𝑡) = ψ(𝑣),    

 

(6-1) 

 

(6-2) 

where: 𝒙𝒖 = [𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)]𝑇 is a vector of neuron input signals; 𝒘𝒔 = [𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)]𝑇 is a vector of neuron input signals; 𝒘𝒏+𝟏  is a neuron sensitivity threshold; 𝒗(𝒕)  is a similarity measure between input signals and synaptic weight coefficients 

(result of the confluence operation); 𝛙(𝒕) is a nonlinear activation function; 𝒚(𝒕) is a neuron output. 

However, because of the too simple model of a neuron, especially because of the discontinuity in 

nonlinear activation function, perceptron is not able to solve some simple operations. These 

constraints of the perceptron can be overcome by applying a continuous differentiable activation 

function. Sigmoid functions are commonly used as activation functions because it was proved that 

the ANNs composed of at least three layers of neurons with sigmoid functions can represent any 

continuous function. One of the most commonly used activation functions is tansig defined by the 

following expression: 
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ψ(𝑣) = 21 + 𝑒−2𝑔0𝑣 − 1, (6-3) 

 

where 𝑔𝑜 is an activation gain and it is usually set to 1. Because of an extension of the initial model, 

in literature neurons with sigmoid activation functions are also referred to as perceptrons. 

Neuron models can be divided in two groups: static and dynamic models. Static neuron models, as 

opposed to dynamic ones, do not contain dynamic elements and their output depends exclusively on 

current values of input signals and weight coefficients. In this deliverable only ANNs with static 

neuron models are analysed. 

6.3.1.2 Multilayer perceptron 

Static neural networks are most commonly used ANNs, especially in identification and control 

applications. A basic element of the static ANN is a static neuron. In static ANNs neurons are 

organised in a feedforward way, i.e.: each neuron can be connected to the network inputs and/or to 

other neurons, but in the way that no feedback connections are formed. Therefore, static ANNs do 

not contain any dynamic elements and that makes them statically stable which is their most 

important advantage in relation to dynamic ANNs. However, in order to model a dynamic system, 

delayed input and output signals have to be explicitly included in the vector of input signals of the 

static ANN. The most commonly used static ANNs are multilayer perceptrons (MLP) whose structure 

is presented in Figure 6.3. MLPs consist of perceptrons organized in serially connected layers. Layers 

are often labelled with numbers 0, 1, 2,⋯ , 𝐿, while for the number of nodes in the 𝑙-th layer we use 

label 𝑛(𝑙). The zeroth layer only transfers the input vector to an input of the first layer, 𝐿-th layer is 

an output layer, while layers between them are called hidden layers. Every neuron in a hidden layer 

is connected to all the neurons in two neighbouring layers with unidirectional feedforward 

connections. Connections between neurons of the neighbouring layers are represented by synaptic 

weight coefficients which act as signal gains on the corresponding connections. Values of the 

synaptic weight coefficients determine the network behaviour, i.e.: its ability of approximating a 

nonlinear function. 

Ψ1,2

Ψ1,1

Ψ1,n(1)

x1

x2

xn(x)

1 = x1,n(0)+1

y0,2 = x1,2

y0,1 = x1,1

y0,n(0) = x1,n(0)

w1,1,1

w1,2,1w1,n(1),1

w1,n(1),n(0)+1

w1,1,n(0)+1

v1,n(1)

v1,2

v1,1 y1,1 = x2,1

y1,2 = x2,2

y1,n(1) = x2,n(1)

ΨL,n(L)

ΨL,2

ΨL,1

1 = xL,n(L-1)+1

yL-1,2 = xL,2

yL-1,1 = xL,1

yL-1,n(L-1) = xL,n(L-1)

wL,1,1

wL,n(L),n(L-1)+1

vL,n(L)

vL,2

vL,1 yL,1

yL,2

yL,n(L)

1 = x2,n(1)+1

Ψ(v1) Ψ(vL)

L10

x y0 x1 W1 v1 y1 x2 yL-1 xL WL vL yL

 

Figure 6.3: Schematic representation of a multilayer perceptron. 

Mathematically, MLPs can be described by the following relations: 𝑦0 = 𝑥, (6-4) 
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𝑥𝑙 = [𝑦𝑙−1𝑇 , 1]𝑇 ,       1 ≤ 𝑙 ≤ 𝐿, (6-5) 𝑣𝑙 = 𝑊𝑙 ∙ 𝑥𝑙 ,         1 ≤ 𝑙 ≤ 𝐿, (6-6) 𝑦𝑙 = ψ(𝑣𝑙),         1 ≤ 𝑙 ≤ 𝐿, (1-7) 

where: 𝒙 = [𝑥1, 𝑥2,⋯ , 𝑥𝑛(𝑥)]𝑇 is a vector of the network input od dimension 𝑛(𝑥); 𝒚𝟎 = [𝑦0,1, 𝑦0,2,⋯ , 𝑦0,𝑛(0)]𝑇 is an output vector of the 0-th layer of dimension 𝑛(0); 𝒙𝒍 = [𝑥𝑙,1, 𝑥𝑙,2,⋯ , 𝑥𝑙,𝑛(𝑙−1), 𝑥𝑙,𝑛(𝑙−1)+1]𝑇  is an input vector to the 𝑙-th layer (input 𝑥𝑙,𝑛(𝑙−1)+1 = 1 multiplied by corresponding weight coefficient gives a scalar bias to 

neurons of the 𝑙-th layer); 𝒗𝒍 = [𝑣𝑙,1, 𝑣𝑙,2,⋯ , 𝑣𝑙,𝑛(𝑙)]𝑇 is an output vector of the confluence operation of the 𝑙-th 

layer; 𝒚𝒍 = [𝑦𝑙,1, 𝑦𝑙,2,⋯ , 𝑦𝑙,𝑛(𝑙)]𝑇 is an output vector of the 𝑙-th layer; 

𝑾𝒍 = [  
  𝒘𝒍,𝟏,𝟏 ⋯ 𝒘𝒍,𝟏,𝒋⋮ ⋮ ⋮𝒘𝒍,𝒊,𝟏 ⋯ 𝒘𝒍,𝒊,𝒋 ⋯ 𝒘𝒍,𝟏,𝒏(𝒍−𝟏)      𝒘𝒍,𝟏,𝒏(𝒍−𝟏)+𝟏⋮ ⋮ ⋮⋯     𝒘𝒍,𝒊,𝒏(𝒍−𝟏)        𝒘𝒍,𝒊,𝒏(𝒍−𝟏)+𝟏⋮ ⋮ ⋮𝒘𝒍,𝒏(𝒍),𝟏 ⋯ 𝒘𝒍,𝒏(𝒍),𝒋 ⋮ ⋮ ⋮⋯ 𝒘𝒍,𝒏(𝒍),𝒏(𝒍−𝟏)  𝒘𝒍,𝒏(𝒍),𝒏(𝒍−𝟏)+𝟏]  

  
 is a weight 

coefficient matrix of the synaptic connections of the 𝑙-th layer, dimension of which is 𝑛(𝑙) × (𝑛(𝑙 − 1) + 1); 𝜳𝒍(𝒗𝒍) = [𝛹𝑙,1(𝑣𝑙,1),𝛹𝑙,2(𝑣𝑙,2),⋯ ,𝛹𝑙,𝑛(𝑙)(𝑣𝑙,𝑛(𝑙))]𝑇is an activation function vector of 

the 𝑙-th layer (usually 𝛹𝑙,1 = 𝛹𝑙,2 = ⋯𝛹𝑙,𝑛(𝑙)). 
The most commonly used activation function in the hidden layer is tansig, while in the output layer 

linear activation function is used. The activation gain is usually set to one.  

The most important properties of the ANNs are universal approximation, learning and adaptation. 

ANN property of approximating any continuous function to an arbitrary accuracy is its most 

important property from the perspective of modelling, identification and control of nonlinear 

processes. Learning and adaptation properties enable that an adequately calibrated ANN has the 

generalization ability when the data that was not present in the calibrating data set comes to its 

input. 

6.3.1.3 Neural network learning algorithms 

Learning algorithm tunes network parameters in order to achieve its desired behaviour. In 

identification and control of nonlinear dynamic systems desired behaviour of a neural network is 

usually known, so error-based algorithms are used for the learning/calibrating procedure. Schematic 

representation of the error-based algorithm for neural network learning is shown in Figure 6.4. 
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Figure 6.4: Schematic representation of the error-based algorithm for neural network learning. 

Resulting neural network response 𝑦𝑛 to the input data is compared to the external reference signal 𝑦𝑑, which represents desired network behaviour, generating error signal 𝑒 based on which the 

learning algorithm changes synaptic weight coefficients of the network in order to improve its 

behaviour, i.e.: to decrease the error. As an error measure a criterion function ℑ(Θ) is used and it 

can be any positive scalar function dependent on ANN parameters 𝚯. The most commonly used 

criterion function is defined as: 

ℑ(𝜣) = 12∑ 𝑒(𝑣,𝜣) ∙ 𝑒𝑇(𝑣,𝜣) = 12∑∑ 𝑒𝑖2(𝑣,𝜣)𝑛(𝐿)
𝑖=1 = 12𝑒∗𝑇(𝜣) ∙ 𝑒∗(𝜣)𝑁

𝑣=1
𝑁
𝑣=1 ,  

(6-8) 

 

where ν is a number of the measured sample, 𝑁 is an overall number of measured samples, 𝑒∗(Θ) is 

the error vector of the whole measured data set, which is of dimension 𝑁𝑒 = 𝑁 ⋅ 𝑛(𝐿). 
There are two basic approaches in minimizing the criterion function ℑ(Θ): non-recursive and 

recursive. According to the non-recursive approach, function ℑ(Θ)is minimized such that network 

parameter changes are determined based on the complete set of 𝑁 measured samples. According to 

the recursive approach, function ℑ(Θ) is minimized based on a local criterion function ℑν(Θ), i.e. 

network parameters are changed after each measured sample. 

Learning algorithm tunes network parameters until the criterion function reaches its minimum. 

Minimum of the criterion function ℑ(Θ) can be formally defined by its Taylor series expansion in 

vicinity of the parameter vector Θ0 for which the minimum is obtained, and by ignoring its third and 

higher order terms: 

ℑ(𝜣) ≅ ℑ(𝜣𝟎) = ∇ℑ𝑇(𝜣)|𝜣=𝜣𝟎 ∙ ∆𝜣 + 𝟏𝟐∆𝜣𝑻 ∙ 𝑯(𝜣)|𝜣=𝜣𝟎 ∙ ∆𝜣, (6-9) 

where:  ∆𝜣 = 𝜣−𝜣𝟎; ∇ℑ(𝜣) is a gradient vector of the criterion function: 
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∇ℑ(𝜣) = [𝜕ℑ(𝜣)𝜕𝜃𝟏 , 𝜕ℑ(𝜣)𝜕𝜃𝟐 , ⋯ , 𝜕ℑ(𝜣)𝜕𝜃𝒏(𝜃) ] ; (6-10) 

  𝑯(𝜣) = ∇2ℑ(𝜣)  is a Hessian matrix of the criterion function: 

𝑯(𝜣) =
[  
   
   𝜕

2ℑ(𝜣)𝜕𝜃12 𝜕2ℑ(𝜣)𝜕𝜃𝟏𝜕𝜃𝟐 ⋯ 𝜕2ℑ(𝜣)𝜕𝜃𝟏𝜕𝜃𝒏(𝜃)𝜕2ℑ(𝜣)𝜕𝜃𝟐𝜕𝜃𝟏 𝜕2ℑ(𝜣)𝜕𝜃22 ⋯ 𝜕2ℑ(𝜣)𝜕𝜃𝟐𝜕𝜃𝒏(𝜃)⋮             ⋮        ⋱          ⋮𝜕2ℑ(𝜣)𝜕𝜃𝒏(𝜃)𝜕𝜃𝟏 𝜕2ℑ(𝜣)𝜕𝜃𝒏(𝜃)𝜕𝜃𝟐 ⋯ 𝜕2ℑ(𝜣)𝜕𝜃𝒏(𝜃)2 ]  
   
    . (6-11) 

 

For the criterion defined by (1-8), gradient vector and Hessian matrix become: ∇ℑ(𝜣) = 𝑱𝑇(𝜣) ∙ 𝑒∗(𝜣), (6-12) 𝑯(𝜣) = 𝛻2ℑ(𝜣) = 𝑱𝑇(𝜣) ∙ 𝑱(𝜣) +∑ 𝑒𝑖∗(𝜣)𝛻2𝑒𝑖∗(𝜣)𝑵𝒆
𝒊=𝟏 , (6-13) 

where 𝑱(𝜣) is a Jacobian matrix: 

𝑱(𝜣) =
[  
   
  𝜕𝑒1∗(𝜣)𝜕𝜃𝟏 𝜕𝑒1∗(𝜣)𝜕𝜃𝟐 ⋯ 𝜕𝑒1∗(𝜣)𝜕𝜃𝒏(𝜃)𝜕𝑒2∗(𝜣)𝜕𝜃𝟏 𝜕𝑒2∗(𝜣)𝜕𝜃𝟐 ⋯ 𝜕𝑒2∗(𝜣)𝜕𝜃𝒏(𝜃)⋮             ⋮         ⋱        ⋮𝜕𝑒𝑁𝑒∗ (𝜣)𝜕𝜃𝟏 𝜕𝑒𝑁𝑒∗ (𝜣)𝜕𝜃𝟐 ⋯ 𝜕𝑒𝑁𝑒∗ (𝜣)𝜕𝜃𝒏(𝜃) ]  

   
   . (6-14) 

 

Parameter vector Θ = Θ∗ will be the minimum argument of the function ℑ(Θ) if the following 

conditions are fulfilled: ∇ℑ(Θ∗) = 0, (6-15) ΔΘT ⋅ H(Θ∗) ⋅ ΔΘ > 0. (6-16) 

 

Therefore, tuning of the ANN parameters Θ is in fact a nonlinear optimisation problem where the 

criterion function ℑ(Θ) is the objective function of the optimisation problem. Gradient methods are 

most commonly used nonlinear optimisation techniques. The main problem in applying gradient 

methods in ANN learning procedure is calculating a gradient vector of the criterion function over the 

network parameters. This problem has slowed research and application of ANNs for a while, but was 

successfully solved using the backpropagation algorithm. More details can be found in [34]. 

Tuning of the ANN parameter vector Θ is based on an iterative procedure: 𝛩(𝑘 + 1) = 𝛩(𝑘) + 𝛥𝛩(𝑘) = 𝛩(𝑘) + 𝛼(𝑘)𝑠𝑑(𝑘), (6-17) 

where: 
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𝑠𝑑(𝑘) is the minimum searching direction in the 𝑘-th iteration of the optimisation procedure 

(it is based on an information on a function ℑ(Θ)); 𝛼(𝑘) is the learning coefficient in the 𝑘-th iteration of the optimisation procedure (it 

determines the step size in the searching direction). 

Depending on the procedure of determining the minimum searching direction 𝑠𝑑(𝑘), gradient 

methods can be divided into four groups: 

 Steepest descent methods: 𝑠𝑑(𝑘) ∶= −∇ℑ(Θ(𝑘)); 
 Conjugate gradient methods: 𝑠𝑑(𝑘) ∶= −∇ℑ(Θ(𝑘)) + β(𝑘) ⋅ 𝑠𝑑(𝑘 − 1),  where β(𝑘)  is a 

scalar parameter which ensures conjugacy; 

 Newton methods: 𝑠𝑑(𝑘) ∶= −[∇2ℑ(Θ(𝑘))]−1∇ℑ(Θ(𝑘)); 
 Quasi-Newton methods [39], [40]: 𝑠𝑑(𝑘) ∶= −𝑆(𝑘)∇ℑ(Θ(𝑘)) where 𝑆(𝑘) ≅ [∇2ℑ(Θ(𝑘))]−1. 

ANN learning algorithms are named based on the corresponding nonlinear optimisation methods 

which are used: steepest descent algorithms, conjugate gradient algorithms etc. 

6.3.2 Applying neural networks to system modelling 

In the last 20 years neural network applications for predicting variables in ecological and technical 

systems have become a well-known procedure in a research community [41]. In the early phases of 

their applications, ANNs were considered as a novel approach in system modelling and the majority 

of published papers in that period were related to applying ANNs in different systems and exploring 

their advantages in relation to the well-known statistic approaches [42]. Many review papers in this 

research area did not only affirm a potential of using the ANNs in prediction systems, but they also 

noted an importance of developing a standard methodology in the model development procedure 

using ANNs. Clearly defined methodology is an important procedure for all modelling methods, but 

especially in ANN modelling because models are developed based on the available data and they are 

not explicitly based on the physical system that is modelled, therefore, a possibility of developing a 

model which is not very meaningful is increased. 

Main steps in developing the prediction model using ANNs are shown in Figure 6.5. Flow of data and 

outcomes for each step are also shown. First step in model development process is a choice of 

appropriate model outputs (variables which are going to be predicted) and potential inputs. A choice 

of potential inputs is based on a priori knowledge on the modelled process and on data availability. 

Selected data have to be processed (scaled, filtered, lagged) for being in an appropriate form for the 

next model development steps. 

A general ANN prediction model can be expressed in the following form: Y = f(X,W) + e, (6-18) 

  

where 𝑌 is a model output vector, 𝑋 is a model input vector, 𝑊 is a model parameter vector (weight 

coefficients), 𝑓 is a function which defines input-output relationship and 𝑒 is a model error vector. 

Therefore, in model development process we need to define model inputs 𝑋 , a functional 
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relationship 𝑓 defined by the ANN structure and ANN parameter vector 𝑊. Model inputs are 

determined using the so called Input Variable Selection (IVS) procedures which are described in 

subsection 6.3.3. Result of this step are model development data which are then divided in 

calibration and validation data sets. Calibration data are used in ANN learning algorithms for 

determining the optimal model parameters, while validation data are used for validating the 

calibrated model on the independent data set. If implicit regularization is used as a stopping criterion 

of the learning algorithm, calibration data are divided in training and testing data sets. 

The main objective of the ANN learning process is to find the global minimum of the criterion 

function ℑ(Θ). However, in modelling of dynamic systems which inherently contain noise, the global 

minimum of the criterion function is not the optimal solution because the obtained model does not 

assure the best generalization properties. In the first phase of the ANN learning process a decrease of 

the criterion function ℑ(Θ) on the training data leads to a decrease of the criterion function ℑ𝔱(Θ) on 

the testing data. However, after certain number of iterations, value of the criterion function ℑ𝔱(Θ) 
starts increasing although ℑ(Θ) is still decreasing and, therefore, further adjusting of the ANN 

parameters leads to a deterioration of its generalization properties. This problem can be solved by 

early stopping of the learning process when a criterion function value on the testing data starts 

increasing. This procedure is called an implicit regularization. 
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Figure 6.5: Main steps in the model development process using artificial neural networks [42].  

Next step implies choosing a number of hidden layers and a number of neurons in each layer. The 

optimal structure of ANN is usually determined iteratively [42]. For a fixed structure, optimal 

parameters of the ANN are determined using learning procedure and they depend on the choice of 

learning algorithm and on initial ANN parameters. In general case criterion function is nonconvex and 

applying gradient methods can trap model parameter vector in a local minimum of the criterion 

function which is not the optimal solution. Therefore, a calibration process implies a number of 

calibration instances for different initial values of model parameters. ANN, defined by its structure 

and parameters, which has the minimal criterion function value on the calibration data is then 

validated on the validation data set. To ensure that a model development process results in the best 
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possible model, it is required that training, testing and validation data sets have the same statistical 

properties [43]. 

6.3.3 Input variable selection procedure 

One of the most important steps in modelling of complex systems is selection of the appropriate 

input variables. However, this step is usually not concerned to be of an extreme importance and 

most of the input variables are determined heuristically or based on a priori knowledge of the system 

which can result in including too many or too little input variables [44]. 

As a consequence of omitting one or more relevant input variables, model will not be able to 

describe the whole dynamics and phenomena of the system. Possibility of omitting relevant input 

variables is much greater for time series in which input candidates are not only different variables, 

but also their lagged values (unless dynamic ANNs are used) which significantly increases the number 

of potential input variables. Including too many input variables can be caused by poorly assessed 

relevance of an input variable or by existence of a redundancy among them, where some of the 

chosen variables contain some useful information, but are interdependent, so they contain a 

redundant information. This case leads to an increase in a number of local minima in the criterion 

function [42] and makes it harder to determine the optimal model parameters if a gradient method is 

used for ANN learning. On the other hand, with an increase of input variables, a number of model 

parameters is also increased which, as a consequence, leads to decreased speed and quality of the 

learning procedure. Furthermore, existence of an input variable which does not affect the output 

variable can lead to a deterioration of ANN generalization properties, i.e. the model will perform 

poorly on data that were not used during model calibration procedure. 

These considerations indicate that the optimal ANN input variable set consist of the minimal set of 

variables which can describe the system behaviour well enough. A number of IVS algorithms were 

developed and they can be classified in wrapper and filter algorithms [45]. 

6.3.3.1 Wrapper algorithms 

IVS using wrapper algorithms is based on developing a number of ANNs with different input vectors 

and the choice of an appropriate input set is determined based on performance of the corresponding 

ANN. The main drawback of this approach is that such a procedure can last very long because it is 

required to develop a large number of ANNs whereas the development of each implies an 

appropriate choice of the ANN structure and the learning algorithm. Additionally, appropriateness of 

the input variables chosen for a certain ANN architecture is not guaranteed for another architecture, 

so the application of the obtained input set is rather limited [44]. 

For 𝑑 potential input variables, a number of possible input subsets is 2𝑑 − 1. Therefore, because of 

the large computational and time requirements, all possible input variable combinations are almost 

never tested. The most commonly used wrapper algorithms are forward selection, backward 

elimination and genetic algorithms [45]. 

Forward selection is an incremental procedure for forming the optimal input variable set in which a 

number of variables is incrementally increased. In the beginning, one out of 𝑑 variables, for which an 

ANN with the best performance is obtained, is chosen. Then, the input set is enlarged by the next 
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one out of 𝑑 − 1 remained variables for which an ANN performance is most improved. A procedure 

is repeated until adding a new variable to the input set does not lead to a significant improvement of 

the ANN performance. 

Backward elimination is a procedure inverse to a forward selection, i.e. the input variable set is 

incrementally reduced. The procedure starts with an input set which contains all the potential input 

variables and the least relevant variables are progressively eliminated from the input set. This 

procedure is computationally more intensive than the forward selection because a large number of 

inputs requires learning an ANN with much larger number of parameters. 

Genetic algorithms introduce stochastic elements in the procedure of selecting the optimal input 

variable set, increasing a possibility of finding the optimal set. Genetic algorithms show their 

advantages in relation to forward selection and backward elimination when the candidate set 

contains variables which only combined with other variables show their relevance to an output 

variable, while taken separately, do not have an excessive importance. 

6.3.3.2 Filter algorithms 

Unlike wrapper, filter algorithms use statistical measure of dependence between an output variable 

and potential inputs as a criterion for input selection. Uncoupling IVS procedure and model 

calibration does not only increase the modelling efficiency, but also extends possible applications of 

the obtained input set. However, efficiency of a filter algorithm is highly dependent on the statistical 

measure employed [44]. 

The most commonly used statistical measure of dependence is a linear correlation coefficient whose 

main drawback is that it only determines the linear dependence between variables which is 

particularly problematic in the model development using ANNs because they are used as an 

alternative to linear regression when a dependence between model inputs and output is nonlinear. 

Therefore, it is more meaningful to use an appropriate nonlinear statistical measure of dependence, 

like mutual information [42]. Unlike linear correlation coefficient, mutual information is also sensitive 

to dependences which are reflected in higher input-output correlation moments – mutual 

information is equal to zero if and only if two variables are strictly independent [46]. 

Apart from inputs relevance, IVS procedures should also consider redundancy of the input variables. 

In order to do so, a suitable algorithm based on partial mutual information (PMI) was developed and 

it is described in the next subsection. 

6.3.3.3 Input variable selection algorithm based on partial mutual information 

For a given continuous random variable 𝑋 with a codomain 𝐶(𝑋), Shannon entropy is defined as: H(X) = −∫ f(x) ln f(x)C(X)  dx, (6-19) 

 

where 𝑥 is an outcome of random variable 𝑋 and 𝑓(𝑥) is its probability density function (pdf). 

Entropy is a term well-known in the information theory and it represents an informational 

description of random events and defines a measure of the information content, i.e. random variable 

uncertainty. Mutual information of two random variables, 𝑋 and 𝑌, is defined as: 
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I(X; Y) = ∫ ∫ f(x, y) ln ( f(x, y)f(x)f(y))C(X)C(Y)  dxdy, (1-20) 

 

where 𝑓(𝑥) and 𝑓(𝑦) are pdfs of the variables 𝑋 and 𝑌, respectively, and 𝑓(𝑥, 𝑦) is a joint pdf of the 

random vector (𝑋, 𝑌). Mutual information can be expressed using entropies as: I(X; Y) = H(X) + H(Y) − H(X, Y), (6-21) 

 

where 𝐻(𝑋) and 𝐻(𝑌) are entropies of the random variables 𝑋 and 𝑌, respectively, and 𝐻(𝑋, 𝑌) is a 

joint entropy of the random vector (𝑋, 𝑌). Mutual information represents a reduction in uncertainty 

of the random variable 𝑌 knowing the random variable 𝑋 and vice versa. Figure 6.6 depicts the 

dependency among mutual information and entropies of the random variables 𝑋 and 𝑌. 

Here, 𝐻(𝑌|𝑋) is conditional entropy of 𝑌 given 𝑋, that is, the amount of uncertainty in the random 

variable 𝑌 when the value of 𝑋 is known, and it is formally defined as: 

H(Y|X) = ∫ ∫ f(x, y) ln ( f(x)f(x, y))C(X)C(Y)  dxdy. (6-22) 

 

H(Y|X)

I(X;Y)

H(X|Y)

H(X)

H(Y)

 

Figure 6.6: Venn diagram showing a relationship among mutual information and entropies of random variables X and Y.  

Let us now consider the third random variable, 𝑍. A part of a mutual information 𝐼(𝑍; 𝑌) which is not 

contained in 𝑋, 𝐼(𝑍; 𝑌|𝑋), is called a partial mutual information and it is determined using the 

following expression: I(Z; Y|X) = H(X, Z) + H(X, Y) − H(X) − H(X, Y, Z). (6-23) 

 

Given 𝑋 and the already reduced uncertainty 𝐻(𝑌|𝑋) shown in Figure 6.6, the PMI 𝐼(𝑍; 𝑌|𝑋) is 

defined as the further reduction in uncertainty of the random variable 𝑌 that is gained by the 

additional mutual observation of the random variable 𝑍. 
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Figure 6.7 depicts the dependence among PMI, individual and joint entropies of the random variables 𝑋, 𝑌 and 𝑍. PMI is invariant under strictly monotonic transformations which makes it robust against 

possibly nonlinear distortions among random variables [47] and this is one of its most important 

advantages in relation to the linear correlation. However, a problem in determining a mutual 

information is that pdfs of the random variables have to be known. In practice, the real pdfs are not 

known and it is needed to estimate them. This topic is covered in the next subsection. 

H(Y|X,Z)

H(X|Y,Z) H(Z|X,Y)

I(X;Y|Z)

I(X;Z|Y)

H(Y)

H(X) H(Z)

I(Z;Y|X)

 

Figure 6.7: Venn diagram showing a relationship among partial mutual information and entropies of the random variables 

X, Y and Z. 

PMI-based IVS algorithm is presented in [48]. Details of the algorithm are presented here: 

Algorithm 1: Partial mutual information-based input variable selection 

Input: output variable 𝑌, potential input variables 𝐶 

Result: chosen input variables 𝑋 

Initialise 𝑋 ← ∅ 

while 𝐶 ≠ ∅ do 

       for each 𝑐 ∈ 𝐶 

              Estimate 𝐼(𝑐, 𝑌|𝑋) 
       Determine 𝑐𝑠 ∈ 𝐶 that maximises 𝐼(𝑐, 𝑌|𝑋) 
       if algorithm termination criterion is satisfied then 

  Stop running the algorithm 

       Move 𝑐𝑠 to 𝑋 

In [44] a number of algorithm termination criteria are analysed. In this work a predefined number of 

the most relevant input variables was used as a termination criterion. 

6.3.3.4 Estimating partial mutual information 

Considering the expression (1-19) it can be seen that for estimating an entropy of the random 

variable, it is first required to determine its pdf which is estimated from the available historical data, 

i.e. from the considered random variable outcomes. There are two main approaches in estimating a 

pdf: parametric and non-parameteric. 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 Annex 1 – Zone prediction and estimation 
 

 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  70 
 

The parametric approach assumes that data are drawn from a known parametric family of 

distributions, for example the normal distribution with mean μ and variance σ2. Estimating the pdf 

then becomes a problem of estimating the parameters μ and σ2. The non-parametric approach does 

not assume a form of the pdf, so non-parametric methods are usually much more robust and 

accurate than the parametric ones. A review of the most commonly used non-parametric estimation 

methods can be found in [49]. 

One of the most commonly used non-parametric pdf estimation methods is kernel density estimation 

and this method is proposed in [48] in the original version of Algorithm 1. However, this approach 

has some drawbacks -- apart from the fact that it is computationally very intensive and that it 

requires relatively large number of data samples for an accurate estimation, its behaviour is 

dependent on the kernel function parameters. This problem becomes even harder when a dimension 

of the random variable is increased [50]. Much more accurate and computationally less intensive pdf 

estimation method is k-th nearest neighbour method. The method in which an entropy of the 

random variable is directly determined is presented in [47] and it is described here. 

Let us consider three continuous time series, {𝑥𝑡}, {𝑦𝑡} and {𝑧𝑡}, which represent the outcomes of 

random processes {𝑋𝑡}, {𝑌𝑡} and {𝑍𝑡}, respectively. For each vector 𝑣𝑡 ≡ {𝑥𝑡,  𝑦𝑡 ,  𝑧𝑡},  𝑡 = 1,2,⋯ , 𝑁 

and a fixed integer 𝑘,  1 ≤ 𝑘 ≪ 𝑁, a distance ε𝑘(𝑡) to its 𝑘-th neighbour is defined. It means that a 

set {𝑣𝑡∗}, where 𝑡∗ = 1,2,⋯ ,𝑁,  𝑡∗ ≠ 𝑡, contains 𝑘 − 1 vectors with distances from 𝑣𝑡  less than ε𝑘(𝑡) and 𝑁 − 𝑘 − 1 vectors with the distance greater than ε𝑘(𝑡). 
Therefore, for each 𝑡 distance of 𝑣𝑡 to each element of {𝑣𝑡∗} is determined: ε(t) = {||vt∗ − vt||}. (6-24) 

 

This set is then sorted and distance ε𝑘(𝑡) is determined by selecting the 𝑘-th element of the sorted 

set. The distance is determined using  𝑚𝑎𝑥 norm, i.e. || ⋅ || =  max {|| ⋅||𝑥, || ⋅||𝑦, || ⋅ ||𝑧}, where || ⋅ ||𝑥, || ⋅ ||𝑦 and || ⋅||𝑧 can be any norm, but this algorithm suggests using  𝑚𝑎𝑥 norm as well. Let 

us now define a vector 𝑤𝑡 ≡ {𝑥𝑡,  𝑧𝑡},  𝑡 = 1,2,⋯ ,𝑁. 

For each 𝑡 a number of vectors in {𝑤𝑡∗} with distances strictly less than ε𝑘(𝑡) is determined: Nxz(t) = #{t∗ ≠ t;  ||wt∗ −wt|| < εk(t)}. (6-25) 

 

where # denotes a number of elements in the set. In a similar way 𝑁𝑥𝑦(𝑡) and 𝑁𝑥(𝑡) are defined, for 

which 𝑤𝑡 is defined using vectors{𝑥𝑡 ,  𝑦𝑡} and {𝑥𝑡}, respectively. PMI is estimated using the following 

expression: 

 𝐼(𝑍; 𝑌|𝑋) = 1𝑁∑[ℎ𝑁𝑥𝑧(𝑡) + ℎ𝑁𝑥𝑦(𝑡) − ℎ𝑁𝑥(𝑡)]𝑁
𝑡=1 − ℎ𝑘−1, (6-26) 

 

where ℎ𝑛 is the 𝑛-th negative harmonic number defined as ℎ𝑛 = −∑ 𝑖−1𝑛𝑖=1  [47].  
The 𝑘-th nearest neighbour method is computationally much faster than kernel methods are and, 

regardless of a number of considered variables dimension, it requires defining only one scalar 

parameter, 𝑘.  
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Here, we analyse the properties of the PMI estimator in case of the normal distribution for which 

PMI can be determined analytically, as shown in [47]. Multivariate normal distribution of the random 

vector 𝑋 ∈ 𝑅𝑛 with mean 𝑎 ∈ 𝑅𝑛 and covariance matrix 𝑅 ∈ 𝑅𝑛×𝑛 is defined by its pdf: 

f(𝑋) = 1(2𝜋)𝑛/2√𝑅 𝑒𝑥𝑝 (12 (𝑥 − 𝑎)𝑇𝑅−1(𝑥 − 𝑎)), (6-27) 

 

and it is denoted as 𝑋 ∼ 𝒩𝓃(𝑎, 𝑅) where |𝑅| denotes a determinant of the covariance matrix 𝑅. For 𝑛-dimensional normal distribution 𝒩𝓃(𝑎, 𝑅) entropy is determined using the following expression: 

𝐻(𝑋) = 𝑛2 (1 + 𝑙𝑛2𝜋) + 12 𝑙𝑛|𝑅|. (6-28) 

6.3.4 Structure of the prediction model 

This section analyses an identification procedure for prediction models with time horizon of 12-36 

hours. One of the main issues in developing such a multiple-output system is how to assess its 

performance, i.e.: how to define a criterion which will tell us if one model is better than the other. 

The response is trivial if each output of one model outperforms the corresponding output of the 

other model, but generally it is not the case. The simplest approach is to define a local criterion 

function for each output and a global criterion function could be e.g.: a sum of the local criterion 

functions. The first drawback of this approach is that we are usually more concerned about sooner 

prediction hours than about hours at the end of a prediction horizon, so we do not want to give the 

same weight to each local criterion function. An alternative is to use weighted sum of the local 

criterion functions as a global criterion, but a question of how to choose these weights remains open. 

The second drawback is that such a model has the same input vector which is used for describing 

input-output relationship for each output, which generally does not have to be the optimal choice. 

Certainly, developing a separate model for each output can at least perform as well as one model 

with multiple outputs. The first advantage of this approach is that defining a criterion function is 

trivial because for single-output models the local criterion corresponds to the global criterion. The 

second advantage is that such an approach does not necessarily imply a unique input vector for each 

model. The main drawback of this approach is that the whole developing process, including IVS, 

defining the optimal model structure and model calibration has to be carried out multiple times 

which can be computationally very intensive for a large prediction horizon. The concept of this 

approach is depicted in Figure 6.8. 
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Figure 6.8: A static approach of the prediction system which uses a separate model for each system output. 

Unlike the above-mentioned static approaches, the third approach uses the fact that the prediction 

system is considered as dynamic, i.e.: its output depends on past outputs. This dynamic approach is 

depicted in Figure 6.9. The main idea behind this approach is that the model does not have to use all 

the actual data, but also the provisional data, e.g.: output of the 1-hour-ahead model is a prediction 

for one hour ahead and this value can be used by the same model for predicting for two hours 

ahead. Analogously, this procedure can be repeated for obtaining the prediction for k hours ahead. It 

is expected that this approach will be less accurate than the one shown in Figure 6.8 because in this 

case a prediction error of the model is accumulated over the whole prediction horizon. However, if 

the performance of such an approach is not much worse than the one of the static approach, from 

the computational point of view, applying dynamic approach is much more efficient and contains 

significantly less parameters. Additionally, in some applications a larger prediction horizon may be 

required. Extension of the existing prediction model to a larger prediction horizon using dynamic 

approach is trivial; for the static approach this is not the case. Therefore, a dynamic approach is 

chosen for the prediction system. 
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Figure 6.9: A dynamic approach of the prediction system which uses a single model for estimating system outputs for the 

whole prediction horizon. 

6.3.4.1 Adaptive structure of the prediction system 

It is often the case that historical data used for calibrating the prediction model do not cover the 

complete set of possible input-output vectors or that predicted variable values that occurred in past 

differs from values for the coming period due to factors which were not considered or did not have a 

significant impact on the variable during model calibration process. Occurrence of these factors can 

lead to poor predicting abilities of the existing prediction model. Therefore, for robust operation of 

the prediction system the model should be able to adapt to possible changes in the system. 
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Figure 6.10: Adaptive module structure / a principle overview. 

Modified structure of the prediction module is shown in Figure 6.10. The system is composed of two 

parts: off-line and on-line. In the off-line part historical data are used for obtaining the initial 

prediction model and this procedure is described in Subsection 6.3.2. The on-line part of the module 

uses the initial model developed in the off-line part in order to generate predictions. When the data 

are available, they are compared to the corresponding predictions which results in the prediction 

error for the certain time instant. Model parameters are then tuned such that the prediction error is 

decreased. The presented procedure of using the feedback information on prediction accuracy for 

model parameters tuning introduces an adaptation ability to module. 

6.3.4.2 Possible approaches to the on-line tuning of model parameters 

Most real systems are time-variant. In order to track changes in the system, its model parameters 

should be continuously estimated. The on-line part of the prediction system, mentioned in the 

previous section, is the tool for continuous tuning of the model parameters such that the model 

tracks the actual predicted variable evolution as accurately as possible. 

Artificial neural network (ANN) is a flexible model structure that can be easily and systematically 

calibrated and adapted. There is a large number of methods suggested in literature for the so called 

recursive neural network learning. Some of them are based on the recursive approximation of typical 

gradient methods [34], [51]. On the other hand, some recursive methods are based on the 

methodology for dynamic system state estimation [52]-[55]. These methods are based on the state-

space representation of the ANN model [56]: 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 Annex 1 – Zone prediction and estimation 
 

 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  75 
 

wk+1 = wk + rk, (6-29) dk = G(xk, wk) + ek, (6-30) 

 

where 𝐺 is a function which defines the input-output mapping and is determined by the ANN 

structure, 𝑥𝑘 is an input vector, 𝑤𝑘 is a vector of ANN parameters and 𝑒𝑘 is an error vector. In (1-29) 

a vector of parameters 𝑤𝑘 corresponds to a stationary process with identity state matrix, driven by 

process noise 𝑟𝑘. ANN model written in this form enables using extended Kalman filter (EKF) or 

unscented Kalman filter (UKF) for the ANN parameter estimation. However, the ANN models with 

relatively large number of inputs and nodes in the hidden layer result in a large number of 

parameters, and applying EKF or UKF becomes intractable due to numerical stability issues [57]. On 

the other hand, recursive gradient methods for ANN learning are quite robust and their application is 

not limited to ANNs with a small number of parameters. Therefore, this approach in recursive ANN 

learning is analysed hereinafter. 

6.3.4.3 Applying the on-line tuning procedure in normal operation 

We use the prediction model developed within subsection 6.3.4 as an initial prediction model for the 

on-line part of prediction system (see Figure 6.10). Gradient descent method with momentum term 

is used for the recursive ANN learning. ANN parameters Θ are updated based on the following 

relation: ΔΘ(k) = −α∇ℑν(Θ(k)) + γmΔΘ(k − 1), (6-31) 

 

where ΔΘ(𝑘) = Θ(𝑘 + 1) − Θ(𝑘), α is the learning coefficient, ∇ℑν(Θ(𝑘)) is the gradient of local 

criterion function on the corresponding data set and γ𝑚 is the nonnegative momentum term which 

speeds up the learning convergence while attenuating the parasitic oscillations [34]. If the parameter 

vector Θ is to be updated using more than one data sample, we consider two different learning 

styles: (i) incremental learning in which the model parameters are updated consecutively after each 

data sample is presented to the model; and (ii) batch learning in which the parameters are updated 

once after all the data samples are presented. The recursive ANN learning is performed using 

MATLAB® Neural Network Toolbox [58].  

The on-line tuning parameters, learning coefficient α and momentum term γ𝑚 can be determined 

based on the initial set of data that were used for obtaining the initial model. However, those data 

might not contain an evident variation in predicted variable, thus no significant difference in the 

performance of off-line and on-line model would be observed. Therefore, on-line tuning parameters 

can be determined based on the performance of on-line prediction model on the modified testing 

data –e.g. a linear trend is added to the original data such that predicted variable mean increases by 

50% of the initial mean per month. 

6.3.4.4 Concept of conditional adaptation (outliers handling) 

In addition to the normal operation, another possible scenarios which affect the prediction system 

can occur. In the normal operation scenario we assumed that data do not contain potentially 

irregular or corrupted data samples (referred to as outliers). However, it is often the case that data 

on actual data are corrupted -- using these data samples within the on-line tuning procedure could 

cause an undesirable model behaviour. Instantaneous change in mean may be a result of many 
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different external factors that influence the predicted variable, but it may also be caused by a meter 

problem – in the latter case data are characterised as corrupted. 

The basic idea in avoiding the on-line tuning procedure using corrupted data is by marking those 

data, i.e. if a data sample is suspected to be an outlier, it is marked and that data sample will not be 

used in the on-line tuning procedure. In order to recognize an outlier occurrence, min/max values of 

the model inputs are used as boundaries for filtering the outliers. 
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7 Comfort setpoint prediction submodule (Z.PE.7) 

Submodule for prediction of the comfort setpoint in the zone. 

7.1 Submodule inputs 

Table 7.1: Required inputs for comfort setpoint prediction submodule. 

Variable name Variable annotation Variable description 

Comfort setpoint in the zone SP 

Profile of the comfort 

setpoints selected in the past 

needed for off-line model 

tuning; recent values needed 

for on-line operation 

Zone control mode CM 

Integer showing which 

operation mode of the 

heating/cooling system is 

selected in the zone (off, auto, 

fixed fan speed/valve 

openness). 

Building HVAC system 

operation schedule 
SC 

Data showing when is the 

HVAC system for 

heating/cooling turned on/off. 

Possible extension: 

Connection with the company 

business data. 

 

Connection point between the 

EMS and the business 

information system of a 

company (travel orders, 

vacations, sick leaves, different 

known occupancy schedules 

for meetings/lectures...) 

7.2 Submodule outputs 

Table 7.2: Outputs of the comfort setpoint prediction submodule. 

Variable name Variable annotation Variable description 

Prediction model parameters 

(for off-line operation of the 

submodule) 

𝜃𝑆𝑃  
Needed for on-line operation 

of the submodule. 

Predicted comfort setpoint 

evolution per zone (for on-line 

operation of the submodule) 

(SP)N 
Needed for the MPC module 

on the zones level. 

7.3 Methodology 

Methodology of the comfort setpoint prediction submodule is based on logical processing of the 

current comfort setpoint set in the zone, current control mode of the zone and the main assumption 

that the current setpoint doesn’t change over time, meaning that the users within zones know 

exactly what is the desired setpoint and it remains fixed throughout the day. 
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Depending on the selected current control mode off the heating/cooling system within the zone, 

different cases are considered: 

 control mode set to off (no heating/cooling), or a fixed FCU fan speed, radiator valve 

openness: since the heating/cooling element in the zone is currently outside the 3Smart 

control system historical setpoint setup for the same day of the previous week is copied as 

the predicted setpoint for the entire prediction horizon. Historical setpoint setup may include 

again off times as well as times when the users provided setpoint. 

 control mode set to auto (setpoint provided): under the assumption that the users don’t 
change their setpoint, current setpoint is predicted on the entire prediction horizon with the 

exception of time intervals when the HVAC system in the building is out of operation (e.g. 

during the night, during the weekend or national holidays etc.). HVAC system operation 

schedule is obtained from the database or provided manually by the pilot hosts. 

Zone setpoint prediction submodule can be further extended with the use of company business data 

such as travel orders, vacations, sick leaves, different known occupancy schedules for 

meetings/lectures etc. which are then intersected with the current setpoint prediction meaning that 

if a zone has no users present (according to the obtained company business data) no setpoint is 

predicted, thus giving the ability to the zone level MPC module to further manipulate the zone 

temperature within the building protect temperature limits and offer additional savings possibilities. 

8 Zone thermal energy consumption prediction submodule 

(Z.PE.8) 

Submodule for prediction of the heating/cooling energy consumption in the zone. 

8.1 Submodule inputs 

Table 8.1: Required inputs for zone thermal energy consumption prediction submodule. 

Variable name Variable annotation Variable description 

Thermal energy consumption 

in zone 
𝐸𝑡 

Profile of the thermal energy 

consumption in zone needed 

for off-line model tuning; 

recent estimates of the 

thermal energy consumption 

needed for on-line operation 

Weather measurements 𝑇env, 𝐼gloℎ , 𝐼glot  

Measured weather variables:  

temperature, global horizontal 

and tilted global irradiance. 

Weather predictions (𝑇env)N, (𝐼dirn )N, (𝐼diffh )N 

Forecasted weather variables 

(temperature, direct normal 

and diffuse horizontal 

irradiance). 

Time indicators 𝜏 
Variables representing time of 

the day, time of the week and 
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day of the year. Calculated 

from current and historical 

datetimes. 

8.1.1 Solar irradiance data 

EON pilot sites provides measurements of global horizontal and tilted global irradiations which are 

then used as submodule inputs. Since measured and forecasted irradiances are different, during 

submodule operation,  forecasted direct and diffuse irradiance, solar angles (obtained through the 

use of Pysolar python library), geographical pilot site data and current datetime, are used for 

calculation of global horizontal and tilted global irradiances thus matching the measured and 

forecasted irradiance variables. 

8.2 Submodule outputs 

Table 8.2: Outputs of the zone thermal energy consumption prediction submodule. 

Variable name Variable annotation Variable description 

Prediction model parameters 

(for off-line operation of the 

submodule) 

𝜃𝑒𝑡 Needed for on-line operation 

of the submodule. 

Predicted thermal energy 

consumption evolution per 

zone (for on-line operation of 

the submodule) 

(𝐸𝑡)𝑁 
Needed for the MPC module 

on the zones level. 

8.3 Methodology 

Methodology of the zone thermal energy consumption prediction submodule is based on Artifical 

Neural Networks (ANN),  and therefor is identical to the methodology of the heat disturbance 

prediction module which is described in detail in Subsection 6.3. 

9 Zone temperature prediction submodule (Z.PE.9) 

Submodule for prediction of the temperature in the zone. 

9.1 Submodule inputs 

Table 9.1: Required inputs for zone temperature prediction submodule. 

Variable name Variable annotation Variable description 

Temperature in zone 𝑇𝑧 

Profile of the temperature in 

zone needed for off-line model 

tuning; recent measurements 

of zone temperature needed 

for on-line operation 

Weather measurements 𝑇env, 𝐼gloℎ , 𝐼glot  Measured weather variables:  



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 Annex 1 – Zone prediction and estimation 
 

 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  80 
 

temperature, global horizontal 

and tilted global irradiance. 

Weather predictions (𝑇env)N, (𝐼dirn )N, (𝐼diffh )N 

Forecasted weather variables 

(temperature, direct normal 

and diffuse horizontal 

irradiance). 

Time indicators 𝜏 

Variables representing time of 

the day, time of the week and 

day of the year. Calculated 

from current and historical 

datetimes. 

9.1.1 Solar irradiance data 

EON pilot sites provides measurements of global horizontal and tilted global irradiations which are 

then used as submodule inputs. Since measured and forecasted irradiances are different, during 

submodule operation,  forecasted direct and diffuse irradiance, solar angles (obtained through the 

use of Pysolar python library), geographical pilot site data and current datetime, are used for 

calculation of global horizontal and tilted global irradiances thus matching the measured and 

forecasted irradiance variables. 

9.2 Submodule outputs 

Table 9.2: Outputs of the temperature prediction submodule. 

Variable name Variable annotation Variable description 

Prediction model parameters 

(for off-line operation of the 

submodule) 

𝜃𝑡𝑧  
Needed for on-line operation 

of the submodule. 

Predicted temperature 

evolution per zone (for on-line 

operation of the submodule) 

(𝑇𝑧)𝑁 
Needed for the MPC module 

on the zones level. 

9.3 Methodology 

Methodology of the zone temperature prediction submodule is based on Artifical Neural Networks 

(ANN),  and therefor is identical to the methodology of the heat disturbance prediction module 

which is described in detail in Subsection 6.3.  
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Executive summary 

Integrated energy management of buildings and grids installed with the 3Smart project is on the side 

of buildings divided into three vertical levels – zone level, central HVAC system level and microgrid 

level. In each of these levels the energy management algorithms are classified into three parts – (i) 

prediction and estimation, (ii) model predictive control, and (iii) equipment interfacing -- and the 

algorithms are implemented via a sequence of modules. 

The modules are designed, commissioned and tested on different pilot buildings in the Danube 

region. 

Within this deliverable the focus is put on zone level model predictive control.  

The zone level model predictive control module is presented via an interfacing table that explains 

what data are used by it as inputs and what are the final output data. The algorithms behind are in 

more detail explained in the annexed document. 
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1 Introduction 

Within the 3Smart project the following model predictive control module is designed, commissioned 

and tested on the zone level: 

Z.MPC.1 – module for model predictive control that decides on the thermal energy inputs into each 

of the building zones (tested in UNIZGFER, HEP, IDRIJA buildings, STREM school, STREM retirement 

and care centre and EPHZHB buildings within 3Smart). 

In the following chapter the module is presented with its interface tables showing which data it uses 

as inputs and which data it provide as outputs to be at the disposal to other modules and 

submodules. Detailed explanations of algorithms behind it are provided in the previously delivered 

3Smart document D4.4.1 which is refreshed through feedback obtained via pilots operation and is 

provided as Annex 1 to this document. 

Source and sink for the data used by the module is a properly structured 3Smart database. Its 

structure in the part concerned by the module is provided in Annex 2. 

2 Z.MPC.1 module 

Z.MPC.1 module is used for model predictive control that decides on the thermal energy inputs into 

each of the building zones. Within 3Smart it is tested in UNIZGFER, HEP, IDRIJA buildings, STREM 

school, STREM retirement and care centre and EPHZHB buildings. 

The module is executed in on-line and off-line mode – in on-line mode it computes the planned 

optimal operation along the prediction horizon in coordination with the other two MPC modules 

(central HVAC and microgrid levels), in off-line mode it is in charge to compute the optimal daily 

operation on the zone level in coordination with other two MPC modules – a common outcome from 

the MPC modules in off-line operation is also the optimal flexibility bid towards the grid. 

The module interface is defined in Table 2.1 and Table 2.2.  

Table 2.1: Required inputs for the model predictive control module for zones comfort control 

Variable name Notation Description 

Estimates of the current states of 

the simplified building thermal 

dynamics model 

𝑥0 

Non-measured states of the 

simplified model are estimated. 

Predicted profile of comfort 

setpoints SPpred 

Temperature and other comfort 

setpoints that are predicted 

based on models tuned on 

historical data  

Predicted profile of actuation in 

rooms/zones that are outside the 

3Smart EMS control 
manual actuation 

commands for the room 

heating/cooling elements 

Users may be in control to set a 

manual command for the room 

heating/cooling elements or 

some rooms/zones may be 

permanently outside the 

3Smart EMS control, and the 
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EMS should be able to respect 

it; currently just extrapolation 

of the current manual selection 

will be used for  predictions  

Predicted profile of cumulated 

heating/cooling disturbances in 

zones 

𝐸dpred
 

Disturbances predicted based 

on models tuned on historical 

data 

Predicted profile of outdoor 

temperature 𝑇opred 

Predicted profile of outdoor 

temperature received from the 

weather forecast service 

Predicted profile of solar radiation 

on building envelope sides 
𝐼solarpred 

(herein noted as 𝐼dif, 𝐼dir) 

Predicted profiles of solar 

radiation received from the 

weather forecast service 

Identified parameters of the 

simplified building thermal 

dynamics model  

𝐴𝑟𝑜𝑜𝑚, 𝐵𝑟𝑜𝑜𝑚,  𝐶𝑟𝑜𝑜𝑚, 𝐷𝑟𝑜𝑜𝑚 

 

(herein noted as 𝐴, [𝐵𝑢, 𝐵𝑑], 𝐶) 

Parameters identified through a 

procedure provided in D4.4.1 

prediction and estimation 

module 

Predicted profile of temperature 

of the heating/cooling medium 𝑇𝑠𝑢𝑝𝑝𝑙𝑦_𝑚𝑒𝑑 

Values computed through 

optimization on the central 

HVAC level 

Predicted profile of flow of the 

heating/cooling medium 𝑞𝑠𝑢𝑝𝑝𝑙𝑦_𝑚𝑒𝑑 

Values computed through 

optimization on the central 

HVAC level 

Profile of the energy price for the 

heating/cooling energy 𝐽∗(𝐸𝑡) 

 

Profile of prices for the 

heating/cooling demand that is 

generated by the first higher 

module (prices and boundaries 

where they hold) 

Identified parameters of a model 

that relates attainable 

heating/cooling energy on a zone 

element with respect to the 

predicted medium profile and flow, 

as well as to the room temperature  

𝐴𝐻𝐸 , 𝐵𝐻𝐸 , 𝐶𝐻𝐸 , 𝐷𝐻𝐸  (comm

on annotation for either 𝐴𝐹𝐶𝑈 , 𝐵𝐹𝐶𝑈, 𝐶𝐹𝐶𝑈, 𝐷𝐹𝐶𝑈  or 𝐴𝑅𝐴𝐷 , 𝐵𝑅𝐴𝐷 , 𝐶𝑅𝐴𝐷, 𝐷𝑅𝐴𝐷 or 𝐴𝐹𝐻 , 𝐵𝐹𝐻 , 𝐶𝐹𝐻 , 𝐷𝐹𝐻) 

Parameters identified through 

procedures described in D4.4.1 

prediction and estimation 

module 

Identified parameters of the heat 

loss model 𝐶𝑙𝑜𝑠𝑠, 𝐷𝑙𝑜𝑠𝑠 

Parameters of the model that 

relates the supply medium flow 

and temperature at the output 

of the central HVAC system with 

the medium temperature at the 

inlet of the heating/cooling 

elements 

Adjustable parameter of the 

optimization problem for price-

comfort weighing 

𝛿 

(herein noted as 𝜂) 

Parameter for the comfort part 

of the criterion function in 

predictive control 

Adjustable parameter of the 

optimization problem for allowed 

comfort setpoint violation 

𝜎 

(herein noted as Δ) 

Parameter for the comfort part 

of the criterion function in 

predictive control 

 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 – Final building-side energy management software module – MPC, zone level 
 

 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  6 
 

Table 2.2: Outputs of the model predictive control module for zones comfort control. 

Variable name Notation Description 

Optimal profile of heating/cooling 

energy from actuators in zones 

𝐸T  

(herein noted as U) 

Heating/cooling consumption 

profile calculated for each room 

controlled through the EMS, 

that is transferred to the 

interface submodule of the 

zone level, and also to the 

HVAC level MPC module. For 

zones not in 3Smart EMS 

control prediction of required 

energies is calculated if they are 

in automatic control mode, 

otherwise if in manual 

operation the energy 

requirement is considered as 0. 

Optimized profile of temperatures 

in zones 𝑇 

(herein noted as Y) 

Predicted temperature profiles 

for zones, needed on the 

central HVAC level. For zones 

not in 3Smart control the 

temperature profile is 

determined through simulation 

along the prediction horizon. 
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Annex 1 –  Open software module for zone consumption 

management – Model predictive control module  

Annex 1 is provided as a separate document. 
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Annex 2 – 3Smart database organization for open software module 

for zone consumption management – Model predictive control 

module 
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Executive summary 

Model predictive control has been recognized as one of the essential solutions to achieve 

considerable energy savings in buildings. However, its performance on a building zone level 

can be inferior to a well-tuned conventional controller, especially in situations with constant 

energy prices and conservative comfort constraints. Optimization problem in the 

background has to be chosen to guarantee recursive feasibility and considerable energy 

savings without compromising the users comfort at the same time.  

This annex to D4.5.3 document gives a formulation of the model predictive temperature 

control problem in buildings and its fair comparison with conventional controllers with the 

same level of flexibility allowed in zone temperature control. All controllers are tested for a 

system with seasonal heating and cooling, which is the most common case in real 

applications. It is shown that the introduced formulation leads to the model predictive 

controller that significantly outperforms conventional controllers both in energy 

consumption and users comfort.   
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1 Introduction 

In the last few decades, the increased awareness of the limitations of fossil fuels combined with 

increasing energy demand worldwide and noticeable effects of irrational energy consumption has 

resulted in energy-efficiency policies for advocating and encouraging rational energy consumption. 

The improvement of the buildings sector energy efficiency becomes critical to attain a balance in 

many sectors. This is most notably the case with the power sector, as almost half of all the energy 

consumed today is used in buildings [1]. Given the large share of energy consumed in buildings, 

improvement of buildings energy efficiency is crucial to ensure long-term energy security. Model 

Predictive Control (MPC) framework, due to its distinct advantages, significantly outstands among 

other conventional methods applicable for the building control design. Conventional control 

algorithms mostly rely on the calibration of algorithms designed for a typical building according to 

the approximate rule of thumb or trial and error method. Two most common conventional 

controllers used within Building Energy Management Systems (BEMSs) on a zone level are standard 

proportional-integral (PI) controller and hysteresis-type (on/off) controller. The MPC is an 

optimization-based control approach where control actions are calculated by solving finite horizon 

optimal control problem and applied in a receding horizon fashion [2]. To achieve energy savings and 

outperform conventional controllers, this optimization problem needs to be chosen very carefully. 

Potential energy savings are up to 40% [3]–[7], but they must be evaluated in a fair set-up. In most of 

the reported studies, energy savings are gained by setting users comfort zone very wide, mostly 

within the interval 20-25 °C or even wider [8]–[11]. The most commonly recommended temperature 

that ensures comfort is 24 °C and most users are not so flexible to allow temperature deviations of ±2.5 °C or even larger [12], [13]. An additional problem of MPC formulations reported in [8] is a lack 

of recursive feasibility, e.g. if the initial state violates the control problem constraints, small enough 

sampling time under control input constraints will make the control problem infeasible. One way to 

deal with feasibility issues of this type is to replace hard constraints with so-called soft constraints. 

Another solution is to replace classic hard constraints by chance constraints [9], [10], but for south 

oriented building zones with a large glazing area and only cooling or heating available at the certain 

time, this formulation often results in infeasibility as well. Furthermore, for MPC formulations with 

wide comfort zones, it is very hard to determine obtained gains since conventional PI controller has a 

task to follow the reference and on-off type hysteresis controller usually has much narrower 

hysteresis bounds. In addition to extensive literature with claimed gains of MPC over conventional 

controllers, there are several reports showing that for standard applications performance of the MPC 

controller on a zone level is approximately the same, or even worse than the performance of a well-

tuned conventional controller [14], [15]. Standard application implies constant energy prices and 

disabled advanced options such as peak shaving, uncertainty handling, etc. This deliverable is focused 

on a deterministic MPC application in building zones temperature control, and its comparison with 

standard hysteresis and PI controllers, where MPC constraints are matched with hysteresis bounds. 

The MPC and hysteresis approach are both tested for three standard cases with allowed temperature 

deviation from set-point set to ±[0.2 0.5 0.7] °C, which corresponds to limits of cyclic temperature 

variations of A, B and C classes of the thermal environment defined by ISO 7730 standard [12]. The 

MPC problem formulation presented in this deliverable enables considerable energy savings without 

compromising the users comfort. Simulations are performed for the test-site comprised of the 9th 

floor of University of Zagreb, Faculty of Electrical Engineering and Computing (FER) skyscraper 
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building with 23 zones equipped with fan-coils. The gain is obtained by optimally manipulating the 

temperature in the given comfort interval, with respect to current and predicted outdoor conditions. 

 

This deliverable is organized as follows. Submodule interfaces are in detail described in Chapter 2. 

Chapter 3 gives the formulation of MPC with a description of the building model and detailed 

description of the optimization criterion. In Chapter 4, conventional controllers used for performance 

comparison are presented as well as the simulation set-up with used comfort metrics and results. In 

Chapter 5 variable physical limitations of the actuators are introduced. Chapter 6 concludes the 

deliverable. 
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2 Module interface 

Table 2.1: Required inputs for the model predictive control module for zones comfort control 

Variable name Notation Description 

Estimates of the current states of 

the simplified building thermal 

dynamics model 

𝑥0 

Non-measured states of the 

simplified model are estimated. 

Predicted profile of comfort 

setpoints SP 

Temperature and other comfort 

setpoints that are predicted 

based on models tuned on 

historical data  

Predicted profile of actuation in 

rooms/zones that are outside the 

EMS control 

manual actuation 

commands for the room 

heating/cooling elements 

Users may be in control to set a 

manual command for the room 

heating/cooling elements or 

some rooms/zones may be 

permanently outside the EMS 

control, and the EMS should be 

able to respect it; currently just 

extrapolation of the current 

manual selection will be used 

for  predictions  

Predicted profile of cumulated 

heating/cooling disturbances in 

zones 

𝐸dpred
 

Disturbances predicted based 

on models tuned on historical 

data 

Predicted profile of outdoor 

temperature 𝑇o 

Predicted profile of outdoor 

temperature received from the 

weather forecast service 

Predicted profile of solar radiation 

on building envelope sides 
𝐼solar 

(herein noted as 𝐼dif, 𝐼dir) 

Predicted profiles of solar 

radiation received from the 

weather forecast service 

Identified parameters of the 

simplified building thermal 

dynamics model  

𝐴𝑟𝑜𝑜𝑚, 𝐵𝑟𝑜𝑜𝑚,  𝐶𝑟𝑜𝑜𝑚, 𝐷𝑟𝑜𝑜𝑚 

 

(herein noted as 𝐴, [𝐵𝑢, 𝐵𝑑], 𝐶) 

Parameters identified through a 

procedure provided in D4.4.1 

prediction and estimation 

module 

Predicted profile of temperature 

of the heating/cooling medium 𝑇𝑠𝑢𝑝𝑝𝑙𝑦_𝑚𝑒𝑑 

Values computed through 

optimization on the central 

HVAC level 

Predicted profile of flow of the 

heating/cooling medium 𝑞𝑠𝑢𝑝𝑝𝑙𝑦_𝑚𝑒𝑑 

Values computed through 

optimization on the central 

HVAC level 

Profile of the energy price for the 

heating/cooling energy 𝐽∗(𝐸𝑡) 

 

Profile of prices for the 

heating/cooling demand that is 

generated by the first higher 

module 

Identified parameters of a model 

that relates attainable 

heating/cooling energy on a zone 

element with respect to the 

predicted medium profile and flow, 

as well as to the room temperature  

𝐴𝐻𝐸  𝐵𝐻𝐸 , 𝐶𝐻𝐸 , 𝐷𝐻𝐸  (comm

on annotation for either 𝐴𝐹𝐶𝑈 , 𝐵𝐹𝐶𝑈, 𝐶𝐹𝐶𝑈, 𝐷𝐹𝐶𝑈  or 𝐴𝑅𝐴𝐷 , 𝐵𝑅𝐴𝐷 , 𝐶𝑅𝐴𝐷, 𝐷𝑅𝐴𝐷 or 𝐴𝐹𝐻 , 𝐵𝐹𝐻 , 𝐶𝐹𝐻 , 𝐷𝐹𝐻) 

Parameters identified through 

procedures described in 

prediction and estimation 

module 
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Identified parameters of the heat 

loss model 𝐶𝑙𝑜𝑠𝑠, 𝐷𝑙𝑜𝑠𝑠 

Parameters of the model that 

relates the supply medium flow 

and temperature at the output 

of the central HVAC system with 

the medium temperature at the 

inlet of the heating/cooling 

elements 

Adjustable parameter of the 

optimization problem for price-

comfort weighing 

𝛿 

(herein noted as 𝜂) 

Parameter for the comfort part 

of the criterion function in 

predictive control 

Adjustable parameter of the 

optimization problem for allowed 

comfort setpoint violation 

𝜎 

(herein noted as Δ) 

Parameter for the comfort part 

of the criterion function in 

predictive control 

 

Table 2.2: Outputs of the model predictive control module for zones comfort control. 

Variable name Notation Description 

Optimal profile of heating/cooling 

energy from actuators in zones 𝐸T  

(herein noted as U) 

Heating/cooling consumption 

profile calculated for each room 

controlled through the EMS, 

that is transferred to the 

interface submodule of the 

zone level, and also to the 

HVAC level MPC module 

Optimized profile of temperatures 

in zones 
𝑇 

(herein noted as Y) 

Predicted temperature profiles 

for zones that will be needed 

on the central HVAC level 
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3 Model predictive control module for zones comfort control 

Possible energy savings by using MPC have been widely reported in the literature. The aim of this 

deliverable is to identify the best formulation of MPC problem such that it outperforms conventional 

controllers even under the same conditions. Distinct advantages of MPCs lie in (i) using the relevant 

future information in making control decisions; (ii) inherent handling of multi-input multi-output 

(MIMO) systems; (iii) routine respecting of system constraints (e.g. finite amount of heating/cooling 

power, comfort intervals) and (iv) explicit orientation of the control actions towards the specified 

goal such as economic, environmental or their combination. All the mentioned advantages make the 

MPC a favourable choice for the BEMS design. 

3.1 Building model 

Mathematical model of a building is a basis for MPC implementation. The most popular building 

modelling framework consists of using resistor-capacitor (RC) network to model thermodynamic 

processes in buildings [8],[18],[19]. The basic idea of this methodology is to represent building 

elements (or complete zones) with as few thermal circuit elements as possible. The resulting linear 

dynamic models are established as simple, computationally efficient and accurate enough models. 

Due to the hourly resolution of the weather forecast given for the building location by Croatian 

Meteorological and Hydrological Service, a model of the 9th floor of the FER building built on RC 

principles is discretized with an hourly sampling time 𝑇𝑠. Forecast of solar irradiance given at a time 

instant 𝑘 is cumulative solar irradiance received on a unit surface within one sampling interval. 

Forecast of the outdoor air temperature 𝑇𝑜𝑢𝑡  is given as predicted value at 𝑘. To utilize this 

information, influence of outdoor air temperature is discretized by employing first-order hold while 

the rest of the system is discretized by zero-order hold. The resulting discrete system is as follows: 

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢𝑢(𝑘) + 𝐵𝑑1𝑇𝑜𝑢𝑡(𝑘) + 𝐵𝑑2𝑇𝑜𝑢𝑡(𝑘 + 1) + 𝐵𝑑∗ 𝑑(𝑘), (3-1) 𝑦(𝑘 + 1) = 𝐶𝑥(𝑘 + 1) (3-2) 

where 𝑥(𝑘) ∈ ℝ𝑛 is the system state vector, 𝑢(𝑘) ∈ ℝ𝑞 is the thermal energy input to each of 𝑞 

controllable zones from 𝑘  to 𝑘 +  1 , 𝑇𝑜𝑢𝑡(𝑘) ∈ ℝ1  is outdoor air temperature, 𝑑(𝑘) ∈ ℝ𝑝  is 

disturbance input (solar irradiance, internal gains, etc.) and 𝑦(𝑘) ∈ ℝ𝑚  is the vector of room 

temperatures at time step 𝑘. Matrices 𝐴, 𝐵𝑢, 𝐵𝑑1, 𝐵𝑑2 and 𝐵𝑑∗ are matrices of appropriate dimensions. 

3.2 MPC problem formulation 

The resulting performance of the control system with employed MPC depends completely on the 

MPC problem formulation. A special care needs also to be paid to the fact that the computed 

controls are implemented in a receding horizon fashion. The MPC uses the dynamic model of the 

building and information on the future disturbance profiles to predict future building behaviour and, 

based on these predictions, computes the optimal control input trajectory. Predicted states and 

outputs along the prediction horizon 𝑁 ∈  ℤ are conveniently written as: 

 𝑌 = 𝛼𝑥𝑡|𝑡 + 𝛽𝑈 + 𝛾1𝐷1 + 𝛾2𝐷2, (3-3) 

 

where 𝑌 is a stack of future outputs: 𝑌 = [𝑦𝑡+1|𝑡𝑇 𝑦𝑡+2|𝑡𝑇 … . 𝑦𝑡+𝑁|𝑡𝑇 ]𝑇 , (3-4) 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 Annex 1 – Zone model predictive control  
 

 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  7 
 

where 𝑈 is a stack of future outputs: 𝑈 = [𝑢𝑡|𝑡𝑇 𝑢𝑡+1|𝑡𝑇 … . 𝑢𝑡+𝑁−1|𝑡𝑇 ]𝑇 , (3-5) 

 

where 𝐷1 and 𝐷2 are stacks of future disturbances: 

𝐷1 = [𝑇𝑜,𝑡|𝑡 𝑇𝑜,𝑡+1|𝑡 … . 𝑇𝑜,𝑡+𝑁|𝑡]𝑇 , (3-6) 𝐷2 = [𝑑𝑡|𝑡𝑇 𝑑𝑡+1|𝑡𝑇 … . 𝑑𝑡+𝑁−1|𝑡𝑇 ]𝑇, (3-7) 

 

and 𝛼, 𝛽, 𝛾1 and 𝛾2 are matrices based on the discrete building model matrices (3-1). Notation 𝑦𝑡+𝑘|𝑡𝑇  

denotes predicted rooms temperature at time 𝑡 + 𝑘, obtained by applying the input sequence 𝑈 to 

the system starting from current state 𝑥𝑡|𝑡. 

The most frequent MPC problem formulation for temperature control in buildings consists of a 

simplistic minimization of energy consumption with respect to the temperature constraints set by 

the end-users and physical limitations of actuators [8]: min𝑈 𝐽(𝑈, 𝑥𝑡|𝑡 , 𝐷1, 𝐷2)𝑠. 𝑡.      𝑆𝑃 − Δ ≤ 𝑦 ≤ 𝑆𝑃 + Δ𝑃min ≤ 𝑈 ≤ 𝑃max  (3-8) 

 

where: 

𝐽(𝑈, 𝑥𝑡|𝑡 , 𝐷1, 𝐷2) = ∑|𝑅𝑡+𝑘|𝑡𝑢𝑡+𝑘|𝑡|𝑁−1
𝑘=0   , (3-9) 

 𝑆𝑃 is a stack of future set-points profiles per zone: 𝑆𝑃 = [𝑆𝑃𝑡+1|𝑡𝑇 𝑆𝑃𝑡+2|𝑡𝑇 … . 𝑆𝑃𝑡+𝑁|𝑡𝑇 ]𝑇, (3-10) 

 

and 𝑃max and 𝑃min are the physical limitation of actuators present in the zone, calculated based on 

the known equations for calculation of a maximum/minimum power and prediction of medium mass 

flow and supply temperature [22]. Operator |. |1    denotes L1     norm and 𝑃min  and 𝑃max are 

limitations on power inputs 𝑈. Set-points 𝑆𝑃𝑡+𝑘|𝑡 ∈ ℝ𝑚 and allowed deviations from them along the 

prediction horizon Δ ∈ ℝ𝑁⋅𝑚, are defined by the end-users for each of 𝑚 zones. 𝑅𝑡+𝑘|𝑡 ∈ ℝ𝑞×𝑞 is a 

weighting matrix typically set to identity matrix of appropriate size. Formulations like these handle 

users temperature constraints as hard constraints, which often results in infeasibility, especially 

when sign change of 𝑈 is not possible (only heating or only cooling available). 

To solve this problem, temperature constraints are ”softened” by introducing them into the cost 

function through slack variables 𝜎𝑡+𝑘|𝑡 ∈ ℝ𝑚  with large weights 𝐺𝑡+𝑘|𝑡 ∈ ℝ𝑚×𝑚  (e.q. 𝐺𝑡+𝑘|𝑡 =106𝐼𝑚×𝑚, ∀𝑘). The resulting optimization problem is as follows: 
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min𝑈,Σ 𝐽(𝑈, 𝑥𝑡|𝑡 , 𝐷1, 𝐷2, ∑)𝑠. 𝑡.      𝑆𝑃 − Δ − Σ ≤ 𝑦 ≤ 𝑆𝑃 + Δ + Σ𝑃min ≤ 𝑈 ≤ 𝑃max,∑ ≥ 0 , (3-11) 

 

where: 

𝐽(𝑈, 𝑥𝑡|𝑡 , 𝐷1, 𝐷2, Σ) = ∑|𝑅𝑡+𝑘|𝑡𝑢𝑡+𝑘|𝑡|1𝑁−1
𝑘=0 + ∑|𝐺𝑡+𝑘|𝑡𝜎𝑡+𝑘|𝑡|1𝑁

𝑘=1  (3-12) 

 

with ∑ defined as: Σ = [𝜎𝑡+1|𝑡𝑇 𝜎𝑡+1|𝑡𝑇 … . 𝜎𝑡+𝑁|𝑡𝑇 ]𝑇, (3-13) 

 

In most of the situations, occupants want the exact temperature to the one they have chosen on the 

zone thermostat. This can be obtained by defining the MPC problem as a classic reference tracking 

problem: min𝑈 𝐽(𝑈, 𝑥𝑡|𝑡 , 𝐷1, 𝐷2)𝑠. 𝑡.      𝑃min ≤ 𝑈 ≤ 𝑃max, (3-14) 

 

where: 

𝐽(𝑈, 𝑥𝑡|𝑡 , 𝐷1, 𝐷2) = ∑|𝑅𝑡+𝑘|𝑡𝑢𝑡+𝑘|𝑡|1𝑁−1
𝑘=0 + ∑ |𝑄𝑡+𝑘|𝑡(𝑦𝑡+𝑘|𝑡 − 𝑆𝑃𝑡+𝑘|𝑡)|1

𝑁
𝑘=1  (3-15) 

 

and 𝑄𝑡+𝑘|𝑡 ∈ ℝ𝑚×𝑚 is a weighting matrix. This MPC formulation, combined with a receding horizon 

strategy, often results in either minimum energy performance at the cost of completely disregarded 

temperature comfort or in permanent set-point following with disregarded energy consumption. A 

compromise between the two options is made through the mentioned weighting matrices. 

To tackle the opposing criteria of reference following and energy saving, weighting matrices 𝑅𝑡+𝑘|𝑡 

and 𝑄𝑡+𝑘|𝑡  have to be chosen in a way which enables smart switching between these two 

requirements based on predicted disturbance profiles. Optimization cost 𝐽  presented in this 

deliverable is comprised of two terms, 𝐽1 and 𝐽2. Term 𝐽1 is related to minimization of energy 

consumption: 

𝐽1(𝑈, 𝑥𝑡|𝑡 , 𝐷1, 𝐷2) = ∑|𝑅𝑡+𝑘|𝑡𝑢𝑡+𝑘|𝑡|1𝑁−1
𝑘=0 , (3-16) 
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where 𝑅𝑡+𝑘|𝑡 ∈ 𝑅1 is the energy cost important for subsequent coordination with the microgrid or 

HVAC level. Temperature demands of the end-users are forced by the term 𝐽2: 

𝐽2(𝑈, 𝑥𝑡|𝑡 , 𝐷1, 𝐷2, Σ) = ∑|𝐺1,𝑡+𝑘|𝑡𝜎1,𝑡+𝑘|𝑡|1 + ∑|𝐺2,𝑡+𝑘|𝑡𝜎2,𝑡+𝑘|𝑡|1
𝑁

𝑘=1
𝑁

𝑘=1+η ∑|𝑅𝑡+𝑘|𝑡 𝑄𝑡+𝑘|𝑡(𝑦𝑡+𝑘|𝑡 − 𝑆𝑃𝑡+𝑘|𝑡)|1
𝑁

𝑘=1
 (3-17) 

 

where η ≥ 0 ∈ ℝ1 is arbitrary weighting coefficient. Asymmetric slack variables 𝜎1 and 𝜎2 defined as 

in Eq. (3-13) guarantee minimal temperature requirements, i.e. different weighting factors 𝐺1,𝑡+𝑘|𝑡 ≠ 𝐺2,𝑡+𝑘|𝑡  can be used for penalizing upper and lower limit temperature constraints violation. 𝐽2 can be 

interpreted as four-segmented convex PieceWise Affine (PWA) penalty function (Figure 3.1). 

 

Figure 3.1: Convex PWA penalty function for the 𝒋th zone and 𝑵 = 𝟏. 

To be comparable, both parts of optimization cost have to be expressed in the same units. Since 𝐽1 is 

defined in watts, weighting matrix 𝑄𝑡+𝑘|𝑡  is utilized to convert temperature related cost part 𝐽2 from 

degrees Celsius to watts. Building model (3-1) is linear so the amount of energy which can be saved by 

allowing the zone temperature to slide below the set-point during the heating season or above the 

setpoint during the cooling season, under the same weather conditions, is linear function of system 

dynamics. Sensitivity of the energy consumption to the zones temperature is defined as: 𝜕𝑈𝜕𝑌 = 𝜕(𝛽−1(𝑌 − 𝛼𝑥𝑡|𝑡 − 𝛾1𝐷1 − 𝛾2𝐷2))𝜕𝑌 = 𝛽−1. (3-18) 

 

Matrix 𝛽−1is lower bidiagonal matrix with all elements on the main diagonal equal to (𝐶𝐵𝑢)−1 and to 

the −(𝐵𝑢−1𝐴𝐶−1) on the secondary diagonal. By setting weighting matrices along the horizon to: 

𝑄𝑡+𝑘|𝑡 = [ (𝐶𝐵𝑢)−1−(𝐵𝑢−1𝐴𝐶−1)] ,          𝑘 = 1, … , 𝑁 − 1, (3-19) 

 

and 𝑄𝑡+𝑁|𝑡 =  (𝐶𝐵𝑢)−1, 𝐽2 is converted from degrees to watts. Final optimization cost is thus: 𝐽(𝑈, 𝑥𝑡|𝑡, 𝐷1, 𝐷2, Σ1 , Σ2, 𝜂) = 𝐽1(𝑈, 𝑥𝑡|𝑡 , 𝐷1, 𝐷2) + 𝐽2(𝑈, 𝑥𝑡|𝑡, 𝐷1, 𝐷2, Σ1 , Σ2, 𝜂) (3-20) 
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Weighting factor 𝜂 determines the importance of reference tracking with respect to the minimization 

of energy consumption (Figure 3.2). 

 

Figure 3.2: Dependence between weighting factor 𝜼 and system performance. 

For 𝜂 = 1 both energy consumption and reference tracking have the same weights, so the controller 

will decide what is best from the energy viewpoint. For 𝜂 > 1 bigger weight is set on reference 

tracking so the system will slide from the set-point when it is unavoidable or when this will results 

with considerable energy savings. Final optimization problem written in compact form is as follows: min𝑈,Σ1,Σ2 𝐽(𝑈, 𝑥𝑡|𝑡 , 𝐷1, 𝐷2, Σ1 , Σ2, 𝜂)𝑠. 𝑡.      𝑆𝑃 − Δ − Σ1 ≤ 𝑦 ≤ 𝑆𝑃 + Δ + Σ2𝑃min ≤ 𝑈 ≤ 𝑃max,Σ1 ≥ 0Σ2 ≥ 0 , (3-21) 

 

With such a criterion, in the heating season, solar irradiance influence that can result in overheating 

is heavily penalized, which adversely forces the system to minimize overheating, i.e. to use the free 

energy from outdoors starting from the lower edge of the allowed range. Effectively, the actuators 

are controlled such that the lower bound of the temperature range is reached prior to the stream of 

free energy from outdoors. In the cooling season system is forced to quit cooling the zone when free 

cooling can be utilized. 
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4 Results for fixed physical limitations of actuators 

The test-case studied in this deliverable is 9th floor of the FER building (Fig. 4). Overall studied area of the test-

site is about 700 m
2

 large. 

 

Figure 4.1: 3D drawing of the 9th floor of FER skyscraper building. 

All controllers are employed to control directly the thermal powers required to achieve the desired 

temperature behaviour. Fan-coils have very fast dynamics, i.e. every feasible power can be achieved 

in negligible time, so in this study lower level controller required to calculate direct control actions to 

fan-coils, required for real implementation of PI and MPC algorithms, is not considered.  Instead, it is 

assumed that power references can be tracked perfectly. It is assumed that all unit can generate 

fixed maximal and minimal power 𝑃max  and 𝑃min. 

Data used for external conditions (outdoor air temperature and solar irradiances) are historical 

measurements from the year 2014 taken on a meteorological station close to the FER building. 

Weather disturbances are, in such a setup, assumed to be perfectly forecasted, and all other 

disturbances are neglected. For real building implementations, with a lot of uncertain and 

unpredictable disturbances, their compensation is performed by introducing an estimator into the 

control loop. Optimization horizon is 24~h long with hourly sampling time. Hysteresis and PI 

controller are continuous-time controllers operated in a standard closed-loop fashion.  

It is assumed that at a certain moment either only heating or only cooling is available. This 

corresponds to standard two pipe implementation of heating/cooling system present in many 

buildings. The cooling season starts at 1
st

 June and lasts until 1
st

 October. The building operates in 

two working modes: daily mode, from 6 to 18 hours, during which temperature requirements of the 

end-users are set to 24 °C for both seasons, and night mode, from 18 to 6 hours. During night mode 

(𝑡 + 𝑘 is within the interval from 18 to 6 hours) reference following part is omitted from the 

temperature related cost function part 𝐽2. This implies 𝑄𝑡+𝑘|𝑡 = 0𝑚×𝑚 for 𝑡 + 𝑘 within night mode 

interval and  as in (3-19) otherwise.  

Allowed deviations during night mode are set to Δ𝑗∗ = 6 °C, which effectively ensures the minimum 

temperature of 𝑆𝑃𝑗 − Δ𝑗∗ to prevent the building from cooling down too much during the heating 

season. In the cooling season, night mode additionally implies unavailable cooling powers, i.e. 𝑃min  =  𝑃max = 0.  

Simulations are performed within MATLAB environment [16]. Optimization problems are solved by 

using YALMIP  [20] and CPLEX [21]. 
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4.1 Conventional controllers 

Conventional PI controller represents a typical decentralized control approach which can be found in 

many building applications. Comparison with PI controller will give the baseline for energy 

consumption since PI controller ensures tracking of user reference all the time when it is possible. 

The synthesis of PI controller is performed automatically within the MATLAB environment to ensure 

the best performance regarding reference tracking [16]. 

 

The test-site zones are currently controlled by an industrial RXC controller [17] based on hysteresis 

control of fan-coils. To assess the possible energy savings on FER building, achievable by 

improvement of its BEMS with MPC, hysteresis control is also included into comparison. The fan-coils 

operate at 3 different fan speeds (FS). The amount of power at certain speed depends on the 

temperature and mass flow of the heating/cooling medium and is considered as constant. To be as 

close as possible to the real system, power amounts are estimated from calorimeter readings 

available on each major supply duct of the heating/cooling system on the considered floor of the 

Faculty building. The RXC controller switches between available power outputs based on the 

temperature difference between current 𝑗th zone temperature 𝑇𝑗 and set-point value SP𝑗 set by the 

end-users (Figure 4.2). Hysteresis width 2Δ is predefined and equal for all zones. 

 
Figure 4.2: Hysteresis control law for the 𝒋th zone in the heating season. 

 

4.2 Comfort metrics 

Average deviation 𝐴𝐷 from the set-point is calculated as the ratio of the sum of all the deviation 

amounts during daily mode and overall number of samples during daily mode, where 𝑀 is number of 

measurements per zone: 

𝐴𝐷 = 1𝑚𝑀 ∑|𝑦𝑡|𝑡 − 𝑆𝑃𝑡|𝑡|1.𝑀
𝑡=0  (4-01) 

4.3 Results 

Comparison of overall energy consumption during the whole year of 2014, for different types of 

control, different flexibilities Δ and different weights 𝜂 is given in Figure 4.3. 
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Figure 4.3: Comparison of the overall energy consumption of different controllers in 2014. 

All saving percentages in the Figure 4.3 are calculated in relation to the PI controller. Energy savings 

achievable by replacing the RXC controller with the presented MPC with the same temperature 

constraints and 𝜂 = 1 are up to 30% in the cooling season and up to 3% in the heating season. For 

the case with 𝜂 = 0 savings percentages are even higher, but at the cost of totally disregarded users 

comfort. By choosing 𝜂 the user can define does he want to be energy efficient and save the energy 

or does he strictly want the reference following behaviour. Obtained numbers show large potential 

of the presented MPC formulation, especially because for 𝜂 ≥ 1 energy savings are not obtained at 

the account of totally violated users comfort. Moreover, following from Figure 4.4 it may be 

observed that users comfort is improved, i.e. average deviations of MPC are smaller than the ones of 

hysteresis controller.   
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Figure 4.4: Average deviation from 𝑺𝑷 for different types of controllers. 

The results show that for the presented case study energy savings can be increased beyond the 20% 

without becoming worse in average set-point deviation than hysteresis controller. Figure 4.4 shows a 

comparison of time responses of two selected building zones controlled by the hysteresis controller 

and the MPC during one week in November 2014 with Δ = 0.2 °C and 𝜂 = 1.1. 
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Figure 4.5: Comparison of time responses of two selected building zones controlled by hysteresis controller and MPC during 

one week of heating season for 𝚫 = 𝟎. 𝟐 °C and 𝜼 = 𝟏. 𝟏. 
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5 Variable actuator thermal power limitations 

Attainable thermal power depends on the actuator type and available heating/cooling medium 

temperature and mass flow defined by optimizing the energy on the HVAC level or as a constant 

value specified from the system administrator. In the following subsection three types of problems 

regarding three different types of thermal actuators will be discussed. 

5.1 Fan coil units 

Since time constant of the FCU is relatively small compared to the time constants of the building, the 

attainable thermal power of the Fan Coil Unit (FCU) is defined with the following algebraic equation: 𝑃max(𝑘) = 2𝑄w(𝑘)𝑐w𝑈o𝐻(𝑘)2𝑄w(𝑘)𝑐w+𝑈o𝐻(𝑘) (𝑇win(𝑘) − 𝑇ain(𝑘)), (5-1) 

where 𝑄w is medium mass flow through the unit, 𝑐w is heat capacity of the heating/cooling medium 

considered either constant or estimated from the experiments, 𝑇win is supply temperature of the unit 

calculated by using the information on the supply medium temperature on the ducts inlet reduced by 

temperature losses or considered as equal to the ducts inlet temperature for well insulated pipelines. 

Air intake temperature 𝑇ain is considered to be equal to zone temperature (elements of Y vector in (3-

4)). Overall heat transfer coefficient for high speed 𝑈o𝐻 and fixed medium flow 𝑄w   is defined as: 

𝑈o𝐻(𝑘) = 𝑎𝐻1 + 𝑏𝐻𝑄𝑤(𝑘)−𝑐𝐻 ,      (5-2) 

Where 𝑎𝐻 , 𝑏𝐻  and 𝑐𝐻  are known parameters found by performing identification procedure as 

described in Deliverable 4.4.1 related to estimation and prediction. For known FCU model 

parameters and information on medium mass flow and supply temperature, the variable thermal 

power limitations can easily be accounted when calculating optimal energy flow into the zone by 

replacing 𝑃max in (3-8) with (5-1) and setting 𝑃min to zero during a heating season and by replacing 𝑃min in (3-8) with (5-1) and setting 𝑃max to zero during cooling season. The modified optimization 

problem is still linear while the newly introduced physical constraints take into account the real 

nature of the FCU.  

5.2 Radiators and floor heating 

The radiator and floor heating dynamics are much slower than the FCU’s. To enable direct control of 

the radiator and floor heating thermal power and satisfy physical limitations of the system, dynamics 

limitations have to be introduced into the zone level MPC synthesis. The idea is to utilize the 

estimated radiator and floor heating models (same form of the model): 

𝑇wout(𝑘 + 1) = (1 − 𝑎𝑞𝑤𝑇𝑠)𝑇wout(𝑘) + 𝑎𝑞𝑤𝑇𝑠𝑇win(𝑘) − 𝑇𝑠𝑢(𝑘), (5-3) 

where 𝑞w is medium mass flow through the unit, 𝑎 is the coefficient related to the heat transfer from 

heating/cooling medium to the radiator or floor heating system identified by using procedures 

described in D4.4.1. Estimation and Prediction, 𝑇𝑠 is model discretization time which is usually set to 
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the same value as the control sample time,  𝑇win is supply temperature of the unit and 𝑇wout is return 

medium temperature of the unit.  Maximal thermal power is defined as:  𝑃max(𝑘) = 𝑈o(𝑇wout − 𝑇z)𝑛  , (5-4) 

where 𝑇z is zone temperature (elements of Y vector in (3-4)), 𝑈𝑜 is estimated heat transfer coefficient 

from radiator/floor surface to the zone air and 𝑛 is system related parameter which is also identified. 

Since equation (5-4) is nonlinear, to keep the zone level MPC problem linear, in every time step k it is 

linearized around return medium temperature and zone temperature predicted in the previous 

optimization step : 𝑃max(𝑘) = 𝑎 ⋅ Δ𝑇wout(𝑘) + 𝑏 ⋅ Δ𝑇𝑧(𝑘) ,   (5-5) 

Where 𝑎  and 𝑏 are coefficients obtained after linearization with fixed supply medium temperature 

and medium mass flow and  Δ operator denotes deviation from the linearization points. Linearized 

expression for 𝑃max is then introduced in (3-8). Since radiators are used for heating only 𝑃min is always 

zero. Floor heating is used for both cooling and heating, so 𝑃min and 𝑃max change places seasonally as 

described for FCUs. To be able to perform the optimization initial values of the return medium 

temperature at every time step have to be available. 
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6 Conclusion 

Possible gains of Model Predictive Control (MPC) in building climate energy savings depend largely on 

the formulation of the MPC optimization problem. The most important criterion for the problem 

formulation is to guarantee recursive feasibility to enable real system application. Another important 

aspect is care about user’s comfort.  Users are usually most comfortable when the temperature in 

the zone is exactly on the value they have chosen at a thermostat.  The definition of the MPC 

problem presented in this article enables users to define the desired temperature and their own 

comfort region. Temperature drifts from the set-point only when this is economically justifiable or 

when there is no possibility to compensate the effects of external disturbances.  MPC can 

significantly outperform conventional controllers without compromising users comfort. Moreover, it 

is shown that the users comfort is improved. The expected savings are even much higher with MPC's 

full potential exploited in zone control, especially in terms of accounted hour-to-hour variable energy 

prices and in terms of coordination with central heating/cooling medium production and demand 

response. 
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Executive summary 

Integrated energy management of buildings and grids installed with the 3Smart project is on the side 

of buildings divided into three vertical levels – zone level, central HVAC system level and microgrid 

level. In each of these levels the energy management algorithms are classified into three parts – (i) 

prediction and estimation, (ii) model predictive control, and (iii) equipment interfacing -- and the 

algorithms are implemented via a sequence of submodules. 

The submodules are designed, commissioned and tested on different pilot buildings in the Danube 

region. 

Within this deliverable the focus is put on zone level interfacing submodules.  

Each submodule is presented via an interfacing table that explains what data are used by the 

submodules as inputs and what are the final output data. The algorithms behind are in more detail 

explained in the annexed document. 
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1 Introduction 

Within the 3Smart project the following interfacing submodules are designed, commissioned and 

tested on the zone level: 

Z.I.1 – submodule for interfacing commands of heating energy from fan coils to zone air (tested in 

UNIZGFER, HEP, STREM school and EPHZHB pilot buildings within 3Smart);  

Z.I.2 -- submodule for interfacing commands of heating energy from radiators to zone air (tested in 

HEP, IDRIJA school and sports centre and STREM school pilot buildings within 3Smart); 

Z.I.3 -- submodule for interfacing commands of heating energy from floor heating and cooling units 

to zone air (tested in STREM retirement and care centre pilot building within 3Smart). 

In the following chapters the mentioned submodules are presented with their interface tables 

showing which data they use as inputs and which data they provide as outputs to be at the disposal 

to other submodules or to be used for building actuators in zones. Detailed explanations of 

algorithms behind each of the submodules are provided in the previously delivered 3Smart 

document D4.4.1 (related to interfacing on the zone level) which is further updated based on 

feedback operation from pilots and provided here as Annex 1. 

Source and sink for the data used by the submodules is a properly structured 3Smart database. Its 

structure in the part concerned by the zone level interfacing submodules is provided in Annex 2. 

2 Z.I.1 submodule 

Z.I.1 submodule is used for interfacing commands of heating energy from fan coils to zone air. Within 

3Smart it is tested in UNIZGFER, HEP, STREM school and EPHZHB pilot buildings. 

The submodule interface is defined in Table 2.1 and Table 2.2.  

Table 2.1: Required inputs for the fan coils energy input control submodule 

Variable name Notation Description 

Energy input references for 

fan coils (one or several, 

depending whether more 

rooms are handled at once for 

coordination reasons) 

𝐸refT  

(noted herein as 𝑢𝑡|𝑡∗ ) 

Energy input command for fan 

coils that needs to be followed, 

computed by MPC module on the 

zone level 

Parameters of the simplified 

building thermal dynamics 

model (one or several, 

depending whether more 

rooms are handled at once for 

coordination reasons) 

𝐴𝑟𝑜𝑜𝑚, 𝐵𝑟𝑜𝑜𝑚,  𝐶𝑟𝑜𝑜𝑚, 𝐷𝑟𝑜𝑜𝑚 

 (noted herein as  𝐴𝑏 , [𝐵𝑑 , 𝐵𝑢]  𝐶𝑏 , 𝐷𝑏) 

Model obtained through the 

identification procedure above 
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Parameters of the fan coil 

model that relates fan coil 

actuation, room temperature  

and medium conditions 

registered on a calorimeter to 

fan coil energy transmitted to 

room air in a defined time 

period (one or several, 

depending whether more 

rooms are handled at once for 

coordination reasons) 

𝐴fc(𝑄w), 𝐵fc(𝑄w), 𝐶fc(𝑄w), 𝐷fc(𝑄w) 

Model obtained through the 

identification procedure 

Current setpoint temperature 

/ comfort setpoint (one or 

several, depending whether 

more rooms are handled at 

once for coordination reasons) 

SP0 

Needed to check whether the 

user has changed a setpoint in 

order to quickly adapt to the new 

setpoint (on a sampling time 

lower than the sampling time of 

MPC) 

Setpoint used for the 

particular time and 

zone/zones in last MPC 

computation of the required 

thermal input from 

heating/cooling elements 

SPMPC 

Needed to check whether the 

user has changed a setpoint in 

order to quickly adapt to the new 

setpoint (on a sampling time 

lower than the sampling time of 

MPC) 

Currently estimated heat 

disturbance for the zone (one 

or several, depending whether 

more rooms are handled at 

once for coordination reasons) 

𝐸0D 

 

(noted herein as 𝐸d,0) 

Needed to correct the required 

thermal heat input from 

actuators if the estimated 

disturbance has changed from the 

time of MPC computation 

Heat disturbance for the zone 

used by the central zone MPC 

algorithm  𝐸𝑑,𝑡|𝑡CMPC 

 

Needed to correct the required 

thermal heat input from 

actuators when heat disturbance 

for the zone used by the central 

MPC algorithm deviates from the 

real currently estimated heat 

disturbance. 

 

Table 2.2: Outputs of the fan coils energy input control submodule 

Variable name Notation Description 

Computed current commands to 

fan coils actuators 

FS0 (can be also fan 

coil valve command if 

both can be actuated) 

To be applied to the fan coil / fan coils 

Computed future planned 

actuations of the fan coils 

actuators 

FS 

Possibly needed to better estimate 

electricity load and heating/cooling 

profile in the building in near future 

 

3 Z.I.2 submodule 
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Z.I.2 submodule is used for interfacing commands of heating energy from radiators to zone air. 

Within 3Smart it is tested in UNIZGFER, IDRIJA school and sports centre and STREM school pilot 

buildings. 

The submodule interface is defined in Table 3.1 and Table 3.2. 

Table 3.1: Required inputs for the radiators energy input control submodule 
  

Radiators energy input control submodule 

Frequency of submodule calls: every minute 

Variable name Variable annotation Variable description 

Submodule inputs 

Energy input references for 

radiators (one or several, 

depending whether more 

rooms are handled at once for 

coordination reasons) 

0

T
E  

Energy input command for 

radiators that needs to be 

followed, computed by MPC 

module on the zone level 

Parameters of the simplified 

building thermal dynamics 

model (one or several, 

depending whether more 

rooms are handled at once for 

coordination reasons) 

Aroom,Broom,Croom,Droom 

Model obtained through the 

identification procedure above 

Parameters of the radiators 

model that relates radiators 

actuation, room temperature  

and medium conditions 

registered on a calorimeter to 

radiators energy transmitted to 

room air in a defined time 

period (one or several, 

depending whether more 

rooms are handled at once for 

coordination reasons) 

Arad (Vx) 

Brad (Vx) 

Crad (Vx) 

Drad (Vx) 

Model obtained through the 

identification procedure 

Current setpoint temperature / 

comfort setpoint (one or 

several, depending whether 

more rooms are handled at 

once for coordination reasons) 

SP0 

Needed to check whether the 

user has changed a setpoint in 

order to quickly adapt to the 

new setpoint (on a sampling 

time lower than the sampling 

time of MPC) 

Setpoint used for the particular 

time and zone/zones in last 

MPC computation of the 

required thermal input from 

heating/cooling elements 

SPMPC 

Needed to check whether the 

user has changed a setpoint in 

order to quickly adapt to the 

new setpoint (on a sampling 

time lower than the sampling 

time of MPC) 

Currently estimated heat 

disturbance for the zone (one 

or several, depending whether 

more rooms are handled at 

once for coordination reasons) 

0

D
E  

Needed to correct the required 

thermal heat input from 

actuators if the estimated 

disturbance has changed from 

the time of MPC computation 
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Heat disturbance for the zone 

used by the central zone MPC 

algorithm 𝐸𝑑,𝑡|𝑡CMPC 

 

Needed to correct the required 

thermal heat input from 

actuators when heat 

disturbance for the zone used 

by the central MPC algorithm 

deviates from the real currently 

estimated heat disturbance. 

 

 

Table 3.2: Outputs of the radiators energy input control submodule 

 

Submodule outputs 

Computed current commands 

to radiators actuators 

Vx0 

Command to be applied to the 

valve/valves of radiators (one 

or several, depending whether 

more rooms are handled at 

once for coordination reasons) 

For 0-1 open-close valves the 

submodule computes the time 

within the 15-minute interval 

when the valve actuation 

should change from the current 

actuation. 

For valves whose position is 

continuously controllable it is 

computed the minimal change 

in actuation needed in order to 

accomplish the required 

thermal energy input from the 

radiator element. 

 

 

4 Z.I.3 submodule 

Z.I.3 submodule is used for interfacing commands of heating energy from floor heating and cooling 

units to zone air. Within 3Smart it is tested in STREM retirement and care centre pilot building. 

The submodule interface is defined in Table 4.1 and Table 4.2. 

Table 4.1. Required inputs for the floor heating energy input control submodule 

Variable name Notation Description 

Energy input references for 

floor heating/cooling (one or 

several, depending whether 

𝐸refT  

(noted herein as 𝑢𝑡|𝑡∗ ) 

Energy input command for floor 

heating/cooling that needs to be 

followed, computed by MPC 
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more rooms are handled at 

once for coordination reasons) 

module on the zone level 

Parameters of the simplified 

building thermal dynamics 

model (one or several, 

depending whether more 

rooms are handled at once for 

coordination reasons) 

𝐴𝑟𝑜𝑜𝑚, 𝐵𝑟𝑜𝑜𝑚,  𝐶𝑟𝑜𝑜𝑚, 𝐷𝑟𝑜𝑜𝑚 

 (noted herein as  𝐴𝑏 , [𝐵𝑑 , 𝐵𝑢]  𝐶𝑏 , 𝐷𝑏) 

Model obtained through the 

identification procedure of the 

building. 

Parameters of the floor 

heating model that relates 

valve actuation, room 

temperature  and medium 

conditions registered on a 

calorimeter to heating/cooling 

energy transmitted to room 

air in a defined time period 

(one or several, depending 

whether more rooms are 

handled at once for 

coordination reasons) 

𝐴fhc(𝑉x), 𝐵fhc(𝑉x), 𝐶fhc(𝑉x), 𝐷fhc(𝑉x) 

Model obtained through the 

identification procedure of the 

floor heating/cooling units. 

Current set point temperature 

/ comfort set point (one or 

several, depending whether 

more rooms are handled at 

once for coordination reasons) 

SP0 

Needed to check whether the 

user has changed a set point in 

order to quickly adapt to the new 

set point (on a sampling time 

lower than the sampling time of 

MPC) 

Set point used for the 

particular time and 

zone/zones in last MPC 

computation of the required 

thermal input from 

heating/cooling elements 

SPMPC 

Needed to check whether the 

user has changed a set point in 

order to quickly adapt to the new 

set point (on a sampling time 

lower than the sampling time of 

MPC) 

Currently estimated heat 

disturbance for the zone (one 

or several, depending whether 

more rooms are handled at 

once for coordination reasons) 

𝐸0D 

 

(noted herein as 𝐸d,0) 

Needed to correct the required 

thermal heat input from 

actuators if the estimated 

disturbance has changed from the 

time of MPC computation 

Heat disturbance for the zone 

used by the central zone MPC 

algorithm  𝐸𝑑,𝑡|𝑡CMPC 

 

Needed to correct the required 

thermal heat input from 

actuators when heat disturbance 

for the zone used by the central 

MPC algorithm deviates from the 

real currently estimated heat 

disturbance. 

 

Table 4.2: Outputs of the floor heating/cooling energy input control submodule 

 

Submodule outputs 

Computed current commands Vx0 Command to be applied to the 
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to valve actuator valve of the floor 

heating/cooling units (one or 

several, depending whether 

more rooms are handled at 

once for coordination reasons) 

For valves whose position is 

continuously controllable (only 

such exist on the project) it is 

computed the minimal change 

in actuation needed in order to 

accomplish the required 

thermal energy input from the 

floor heating/cooling element 

within the 15 minutes period. 
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Annex 1 –  Open software module for zone consumption 

management – Zone interfacing submodules 

Provided as a separate document. 
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Annex 2 – 3Smart database organization for open software module 

for zone consumption management – Zone interfacing submodules 

 

 

 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 Annex 1 – Zone level interfacing 
 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  

 

Project Deliverable Report 

Smart Building – Smart Grid – Smart City 
http://www.interreg-danube.eu/3smart 

 

 

ANNEX 1 TO D4.5.3 INTERFACES IN ZONES 

Open software module for zones consumption management – Zone 

interfacing submodules 

Project Acronym 3Smart 

Grant Agreement No. DTP1-502-3.2-3Smart 

Funding Scheme Interreg Danube Transnational Programme 

Project Start Date 1 January 2017 

Project Duration 30 months 

Work Package 4 

Task 4.5 

Date of delivery Contractual: 30 June 2019 Actual: 30 June 2019 

Code name Version: 2.0 Final      Final draft       Draft  

Type of deliverable Report 

Security Public 

Deliverable participants University of Zagreb Faculty of Electrical Engineering and 

Computing (UNIZGFER), University of Mostar Faculty of 

Mechanical Engineering, Computing and Electrical Engineering 

(SVEMOFSR) 

Authors (Partners) Anita Martinčević, Mario Vašak, Vinko Lešić (UNIZGFER), Petar 
Marić, Ivan Bevanda (SVEMOFSR) 

Contact person Anita Martinčević (UNIZGFER) 

Abstract 

(for dissemination) 

This annex focusses on implementation of the energy 

management in building zones with fan coil units, radiators and 

floor heating/cooling units. The implementation is based on direct 

control of the required thermal energy inputs via available 

actuators on the heating/cooling elements like fans or valves. It is 

a necessary add-on to model predictive control algorithms that 
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Executive summary 

This annex to D4.5.3 is focused on implementation of the energy management in building zones with 

fan coil units, radiators or floor heating. The implementation is based on direct control of the 

required thermal energy inputs via available actuators on elements like fans or valves. It is developed 

as a necessary add-on to model predictive control algorithms that use thermal models of a building 

and compute the optimal energy inputs in different building zones for minimization of the overall 

energy cost required to keep the thermal comfort. The presented approach is substantially different 

to the generally accepted temperature control via local reactive control that only uses local 

measurements in deciding the control actions for zones thermal actuators. We demonstrate that 

closed loop performance, spent energy and the users comfort, is significantly improved over 

conventional control approaches. The model of a fan coil unit is identified and validated based on 

real data gathered from the living lab of University of Zagreb Faculty of Electrical Engineering and 

Computing. This model is then used for the subsequent control development. Similar approach is 

also followed for radiators and floor heating/cooling units.  
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1 Submodule for fan coils module interface (Z.I.1) 

1.1 Introduction 

Minimization of energy dissipation in buildings, due to the relatively large share of their consumption 

in the overall global consumption [1], [2], has been set as one of the main priorities for improvement 

of the building sector energy efficiency. Due to a relatively long life span of buildings, it is essential to 

make significant efforts to increase the energy efficiency of the existing Heating, Ventilation and Air 

Conditioning (HVAC) systems, i.e., to reduce energy consumption, cut down the maintenance cost 

and improve comfort conditions. The way most building HVAC systems are operated is undoubtedly 

one of the most prominent sources of unnecessary energy dissipation.  The recent studies have 

shown that building consumption can be reduced up to 30% just by ensuring proper operation of its 

subsystems [3], [4]. 

 

Due to their improved performance over classic radiators, Fan Coil Units (FCUs) are widely used for 

localized heating and cooling. Traditional FCU control strategies include fuzzy, hysteresis and PID 

controllers [5], [6]. All the mentioned control approaches switch between fan speeds based on 

temperature difference between setpoint value and current zone temperature. This mostly results 

with zone temperature oscillations of constant, predefined amplitude, leading to unnecessary energy 

consumption. Energy Management System (EMS) that acts by adjusting the optimal temperature 

setpoint values usually neglects the performance of the local thermal actuators in the zone. Such 

systems are also practically inapplicable in tight comfort bounds with simple hysteresis controllers 

used locally for FCU control.  

 

In this deliverable an MPC-based energy management of thermal actuators (heating/cooling devices) 

in zones through direct control of the required thermal energy inputs is developed. As such, it is an 

extension to Centralized MPC (CMPC) algorithms that calculate optimal thermal energy profiles per 

zones based on thermodynamic model of the building [7], [8]. The developed algorithm is a link 

between the commanded variables from the CMPC and the actual actuation profile on 

heating/cooling devices required for these commands to be realized. The significance of the 

proposed approach is a direct control of thermal energy inputs per zone rather than generally 

accepted temperature control [9]. By doing so, a high level of modularity and flexibility for different 

types of thermal actuators is gained, offering a fast replicability of the method, and this is also 

demonstrated by extending the principle to radiators and floor heating/cooling elements.  

 

1.2 Interface for the fan coils interfacing module 

Table 1.1.1: Required inputs for the fan coils energy input control submodule 

Variable name Notation Description 

Energy input references for 

fan coils (one or several, 

depending whether more 

rooms are handled at once for 

coordination reasons) 

𝐸refT  

(noted herein as 𝑢𝑡|𝑡∗ ) 

Energy input command for fan 

coils that needs to be followed, 

computed by MPC module on the 

zone level 

Parameters of the simplified 𝐴𝑟𝑜𝑜𝑚, 𝐵𝑟𝑜𝑜𝑚, Model obtained through the 
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building thermal dynamics 

model (one or several, 

depending whether more 

rooms are handled at once for 

coordination reasons) 

 𝐶𝑟𝑜𝑜𝑚, 𝐷𝑟𝑜𝑜𝑚 

 (noted herein as  𝐴𝑏 , [𝐵𝑑 , 𝐵𝑢]  𝐶𝑏 , 𝐷𝑏) 

identification procedure above 

Parameters of the fan coil 

model that relates fan coil 

actuation, room temperature  

and medium conditions 

registered on a calorimeter to 

fan coil energy transmitted to 

room air in a defined time 

period (one or several, 

depending whether more 

rooms are handled at once for 

coordination reasons) 

𝐴fc(𝑄w), 𝐵fc(𝑄w), 𝐶fc(𝑄w), 𝐷fc(𝑄w) 

Model obtained through the 

identification procedure above 

Current setpoint temperature 

/ comfort setpoint (one or 

several, depending whether 

more rooms are handled at 

once for coordination reasons) 

SP0 

Needed to check whether the 

user has changed a setpoint in 

order to quickly adapt to the new 

setpoint (on a sampling time 

lower than the sampling time of 

MPC) 

Setpoint used for the 

particular time and 

zone/zones in last MPC 

computation of the required 

thermal input from 

heating/cooling elements 

SPMPC 

Needed to check whether the 

user has changed a setpoint in 

order to quickly adapt to the new 

setpoint (on a sampling time 

lower than the sampling time of 

MPC) 

Currently estimated heat 

disturbance for the zone (one 

or several, depending whether 

more rooms are handled at 

once for coordination reasons) 

𝐸0D 

 

(noted herein as 𝐸d,0) 

Needed to correct the required 

thermal heat input from 

actuators if the estimated 

disturbance has changed from the 

time of MPC computation 

Heat disturbance for the zone 

used by the central zone MPC 

algorithm  𝐸𝑑,𝑡|𝑡CMPC 

 

Needed to correct the required 

thermal heat input from 

actuators when heat disturbance 

for the zone used by the central 

MPC algorithm deviates from the 

real currently estimated heat 

disturbance. 

 

Table 1.1.2: Outputs of the fan coils energy input control submodule 

Variable name Notation Description 

Computed current commands to 

fan coils actuators 

FS0 (can be also fan 

coil valve command if 

both can be actuated) 

To be applied to the fan coil / fan coils 

Computed future planned 

actuations of the fan coils 

actuators 

FS 

Possibly needed to better estimate 

electricity load and heating/cooling 

profile in the building in near future 
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1.3 Methodology 

The proposed zone level optimal energy management consists of two hierarchical control levels. 

Higher optimization level consists of CMPC for calculation of optimal thermal energy profile per zone 

for all observed zones. Lower hierarchical level consists of locally-distributed controllers (LMPC), one 

per each zone, employed to control thermal actuators in an optimal way by respecting the 

commands given by the higher control level (Figure 1.3.1). A more complex control configuration 

with single low level controller and zones organized in groups with a goal to smoothen the heat 

demand for the group can be found in [11]. Here we focus on a fully decentralized configuration that 

enables adherence to the thermal energy commands from the higher level. 

 

Figure 1.1.1: Hierarchical MPC for zones comfort control. 

The CMPC algorithm for assessment of optimal thermal energies per zones is developed in [7]. It has 

been shown that the derived optimal control formulation outperforms classic zone temperature 

control algorithms both in energy consumption and achieved comfort, even for very strict comfort 

constraints. The nature of thermal actuators in the referenced study was intentionally left out to 

estimate the upper limit of energy savings achievable by implementation of such a set-up. In terms of 

building climate control, the CMPC calculates an optimal plan of heating and/or cooling with 

sampling time 𝑇𝑠𝑐  for all included zones based on weather prediction, disturbance prediction, energy 

price prediction (in cases with volatile prices) and constraints such as temperature constraint or 

physical limitations of thermal actuators. The first control action per zone 𝑢𝑡|𝑡∗  is then forwarded to 

low level controllers and the procedure is repeated at the next CMPC time step. 

The goals of LMPC energy management of FCU are (i) to ensure that the temperature profile remains 

in the comfort limits, (ii) to assure realization of energy input set by the CMPC and (iii) to guarantee 

the minimal disruption of the users and the minimum energy consumed by the fan by preferring 

lower fan speeds and minimizing the number of fan speed switching. To accomplish all the goals, 

LMPC needs to operate on significantly lower time scales than the ones used for assessment of 

optimal thermal energy flows into the zone. It turns out that a minute scale of 𝑇𝑠  is a good choice for 

reasonable data transfer between the FCU and the central control/data acquisition system and low 

enough scale for reducing the zone temperature oscillations, which are unavoidable in FCU 

operation, especially for FCUs without the possibility of the medium mass flow control. At the 

beginning of every 𝑇𝑠𝑐-long time-interval, LMPC receives an energy command from the CMPC 𝑢𝑡|𝑡∗  

and distributes it into 𝐻 = 𝑇𝑠𝑐/𝑇𝑠 equal shares. After receiving the energy command, LMPC calculates 

an optimal fan speed trajectory 𝑁 steps into the future at every 𝑇𝑠: 
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FS𝑘∗ = [FS𝑘|𝑘∗ FS𝑘+1|𝑘∗ … FS𝑘+(𝑁−1)|𝑘∗ ], (1-1) 

where 𝑁 ≤ 𝐻 is the control horizon length of LMPC controller, and notation FS𝑘+1|𝑘∗  stands for 

predicted optimal fan speed at time step 𝑘 + 1 calculated at time step 𝑘. In accordance with 

receding horizon principle, only the first control action FS𝑘|𝑘∗  is forwarded to the FCU and procedure 

is repeated at the next time interval. If the prediction horizon is outside the interval [𝑡, 𝑡 + 𝑇𝑠𝑐], the 

horizon is shortened so that 𝑘 + 𝑁 ≤  𝐻 is satisfied. To be able to predict future FCU behaviour, the 

FCU model identified in the first part of deliverable D441 concerning identification is discretized with 

sampling time 𝑇𝑑 = 1 s  to preserve the model accuracy. The resulting discrete-time system 

equations are: 

𝑇w
out(𝑘 + 1) = (𝐴𝑑)𝑀𝑇w

out(𝑘) + ∑ (𝐴𝑑𝑗 𝐵𝑑)𝑀−1𝑗=0 [𝑇w
in(𝑘)𝑇a
in(𝑘)], (1-2) 

where 𝐴𝑑  and 𝐵𝑑  are discrete-time counterparts of continous-time fan coil unit model [16] and 𝑀 = 𝑇𝑠/𝑇𝑑.  Analogously, energy inserted into the zone within the time interval [𝑘 𝑘 + 1]𝑇𝑠  is 

defined as: 

𝐸t,𝑘 = (𝑇𝑑 ∑ 𝐶𝑑𝐴𝑑𝑗𝑀−1𝑗=0 )𝑇w,𝑘out + (𝐷𝑑𝑇𝑠 + 𝐶𝑑 ∑ ∑ 𝐴𝑑𝑙 𝐵𝑑𝑇𝑑𝑗−1𝑙=0𝑀−1𝑗=0 ) [𝑇w,𝑘in𝑇a,𝑘in ], (1-3) 

where 𝐶𝑑 and  𝐷𝑑 are discrete-time counterparts of the same matrices of continuous time model. 

Goal (i) 

Zone dynamics can be described with linear state space model of the following form [16]: 𝑥𝑘 = 𝐴𝑏𝑥𝑘−1 + 𝐵𝑢 𝑢𝑘−1 +  𝐵𝑏𝑑𝑘−1,   𝑇a,𝑘in = 𝐶𝑏𝑥𝑘 

(1-4) 

where 𝑥𝑘 ∈  ℝ𝑛 is the system state vector, 𝑢𝑘 ∈  ℝ1  is the thermal energy input, 𝑑𝑘 ∈  ℝ𝑝  is the 

disturbance input (outdoor temperature, solar irradiance, internal gains, temperatures of 

neighboring rooms, etc.). Matrices 𝐴𝑏 , 𝐵𝑢 , 𝐵𝑏  and 𝐶𝑏  are of appropriate dimensions and are 

obtained either based on first principles modeling or by use of identification methods [12],[13],[14]. 

To limit the zone temperature oscillations and to enforce the temperature trajectory to be within a 

user-defined interval the following constraints need to be respected: 

SP𝑘  − Δ𝑘  ≤  𝑇a,𝑘+𝑖|𝑘in  ≤  SP𝑘 + Δ𝑘 ,        ∀ 𝑖 = 1, … , 𝑁,  (1-5) 

where Δ𝑘 is the allowed deviation from SP𝑘 at time 𝑡 + 𝑘𝑇𝑠. If set point SP𝑘 changes within the 

CMPC calculation interval Δ𝑘 are automatically set to 0 on the rest of the CMPC interval.  
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Goal (ii) 

To assure realization of the energy request set by the CMPC, difference between the realized and 

requested energy so far:  

𝛥 𝐸t,𝑘 = 𝑘𝐻 𝑢𝑡|𝑡∗  − ∫ 𝑃t
∗𝑑𝑡 𝑡+𝑘𝑇𝑠𝑡 + ∫ (𝐸𝑑,𝑡|𝑡CMPC − 𝐸d)𝑑𝑡 𝑡+𝑘𝑇𝑠𝑡 ,  (1-6) 

 

is calculated at every time step 𝑘 ≥  1 as: 

𝛥 𝐸t,𝑘 = 𝛥 𝐸t,𝑘−1 + (𝑢𝑡|𝑡∗𝐻  − ∫ 𝑃t
∗𝑑𝑡 𝑡+𝑘𝑇𝑠𝑡+(𝑘−1)𝑇𝑠 + (𝐸𝑑,𝑡|𝑡CMPC−𝐸𝑑,𝑘)𝑇𝑠),  (1-7) 

 

where 𝑃t
∗ is the thermal power from FCU into zone calculated from the FCU measurements [16], 𝐸𝑑,𝑡|𝑡CMPC is predicted disturbance heat flux used in the CMPC calculation and 𝐸𝑑,𝑘  is currently estimated 

heat flux which may differ from the one used in CMPC calculation. The realization of the energy 

requested by the CMPC is then enforced by minimizing the difference between energy to be realized 

with FCU 𝐸t,𝑘+𝑖|𝑘  and the requested one increased for the backlogs defined with (3-6): 𝐽1(FS) =  |(𝑁𝐻 𝑢𝑡|𝑡∗ +  𝛥 𝐸t,𝑘 ) − ∑ 𝐸t,𝑘+𝑖|𝑘𝑁−1𝑖=0 |. (1-8) 

 

Iterative update of 𝛥 𝐸t,𝑘  assures the offset-free input energy control as it emulates the integrator 

behavior. 

Goal (iii) 

Although one FCU consumes a small amount of electricity when its fan is on (~50 W), due to the large 

number of FCUs in the whole building and long working hours, the total electric power consumption 

occupies a large share of central HVAC system electricity consumption. Therefore, optimizing the FCU 

performance improves thermal comfort but also potentially contributes to the electric energy 

savings: 𝐽2(FS) =  ∑ 𝐸el(FS𝑘+𝑖|𝑘)𝑁−1𝑖=0 , (1-9) 

 

where 𝐸el  denotes electrical energy consumption of a FCU. By minimizing the electricity 

consumption, lower fan speeds are favoured thus minimizing also the noise. Since switching between 

fan speeds is the noisiest part of FCU operation, the following penalty function is introduced to 

reduce it: 𝐽3(FS) =  ∑ Δ𝑘+𝑖|𝑘FS𝑁−1𝑖=0 , (1-10) 
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Δ𝑘+𝑖|𝑘FS = {0, if FS𝑘+𝑖|𝑘= FS𝑘+𝑖−1|𝑘1, if FS𝑘+𝑖|𝑘 ≠ FS𝑘+𝑖−1|𝑘, (1-11) 

 ∀𝑖 = 0, … , 𝑁 − 1, with FS𝑘−1|𝑘 = FS𝑘−1|𝑘−1∗  where FS𝑘−1|𝑘−1∗  is the optimal fan speed calculated and 

applied to the FCU in the previous time step. 

The final consolidated LMPC optimization problem for FCU control, written in compact form, is as 

follows: FSk∗ = argmin𝐹𝑆 𝐽1(FS) + 𝜎1𝐽2(FS) + 𝜎2𝐽3(FS)
s.t. (3 − 2), (3 − 3), (3 − 4), (3 − 5)

FS𝑘−1|𝑘 ∈ {0,L,M,H}  ∀𝑖 = 0,1, … 𝑁 − 1, (1-12) 

 

whereas, to enable implementation, constraints defined with (1 − 5)  are included as soft 

constraints. The preferred behaviour is enforced by changing the weights denoted with 𝜎. The 

optimization problem (3-12) belongs to a class of Mixed Integer Linear Programs (MILPs) which can 

be efficiently solved with e.g. CPLEX [15]. The overall algorithm for the MPC energy management of 

FCUs is given in Algorithm 1. 

Algorithm 1: The LMPC algorithm for a FCU control 

1: collect new measurements 𝑄w, 𝑇win, 𝑇ain, 𝑇wout 
2: check for SP and Δ updates, 

3: if SP has been changed within the one CMPC interval then 

4:      set Δ to zero on the rest of the CMPC interval 

5: end if 

6: if 𝑘 = 𝐻 then 

7:      receive 𝑢𝑡|𝑡 from CMPC, 

8:      initialize 𝑘 = 0, Δ𝐸𝑘 = 0, 
9: else 

10:      if 𝑘 + 𝑁 > 𝐻 then 

11:           reduce control horizon to 𝑁 = 𝐻 − 𝑘, 
12:      end if 

13:      update Δ𝐸𝑘 via (1-7) 

14: end if 

15: solve the FCU optimization problem (1-12), 

16: Forward FS𝑘|𝑘∗  to the FCU, 

17: 𝑘 = 𝑘 + 1; 
 

1.4 Results 

The Algorithm 1 is realized and tested first within MATLAB environment [10], before implementation 

on different pilot buildings. Data used as external conditions for dynamic building simulation are data 

from 13
th

 to 20
th

 March 2014 gathered on meteorological station close to the UNIZGFER’s 3Smart 

pilot building. The weather conditions in the selected week (Figure 1.4.1) are chosen as 

representative variable conditions. 
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Figure 1.1.1: Weather conditions from 13
th

 to 20
th

 March 2014. 

All disturbances on CMPC level are assumed to be perfectly known. Simulations are performed with 

the following parameters: SP = 24 °C, Δ = 0.5 °C, 𝑁 = 10 , 𝑇𝑠𝑐 = 3600  s and 𝑇𝑠 = 60  s. The 

temperature is regulated only during working hours, from 6:00 to 18:00. Figure 4.2 shows a 

comparison of temperatures for a typical south-oriented office equipped with FCC06 and the FCU 

thermal consumption for the three control approaches: continuous hysteresis control and two 

approaches based on CMPC, the LMPC and the idealized algorithm with uniform power tracking of 

thermal energy references. For a fair comparison, the hysteresis controller is switched on at 5:00 to 

meet the requirements of working hours in time. 

 

Figure 1.1.2: Zone temperature response and thermal FCU power with different types of control and 𝝈𝟏  = 𝝈𝟐 = 𝟏𝟎𝟎  for 

March 17
th

, 2014. 

Preheating, as a well-known advantage of the MPC, suppresses the need for instant zone heating and 

thus flattens the energy consumption profile by reducing the peak power loads. Figure 1.4.3 gives 

performance comparison of the developed control algorithm and the hysteresis one for the selected 

period in terms of the objective goals 𝐽2  and 𝐽3, overall thermal energy consumption, and average 

deviation from SP for different weights 𝜎1 and 𝜎2. 
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Figure 1.1.3: Performance comparison of the developed control algorithms for the period from 13
th

  to 20
th

  March 2014. 

For appropriately selected weights the developed algorithm outperforms the hysteresis one both in 

energy consumption and comfort with average number of switching per hour within the acceptable 

range. 

Fan coil units (FCUs), due to their inherent non-linearity and limited choice of fan speeds, represent a 

serious challenge for implementation of real-time offset-free MPC that ensures adherence to 

required thermal energy inputs and comfort constraints. Despite complexity, energy management 

based on adherence to the commanded thermal energies, opens the space for cooperation between 

the building zone level and other building subsystems (e.g., smart grid or central HVAC system) 

through communication of energy consumptions and internal prices for it. This also enables the 

coordination of all observed building subsystems and shifting the possible energy cost saving 

percentage beyond the sum of the individual saving potentials.   

 

2 Submodule for floor heating/cooling module interface (Z.I.3) 

2.1 Introduction 

During the past decade, the various attempts and studies have been conducted in order to 

minimize the overall energy consumption in the residential and office buildings. These attempts 

came as a result of a relatively high costs of energy demand in buildings over a long life span. 

In this deliverable the model predictive control approach will be presented for the actuation and 

usage of the floor heating/cooling system units for the purposes of cutting the energy demands 

in residential objects. This approach can be seen as an extension to central model predictive 

algorithms that calculate thermal energy profiles based on the thermodynamical model of a 

building. The main advantage of this methodology is direct control of the thermal energies in 

the building which is more effective from the temperature control of separate zones or rooms. 
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2.2 Module interface 

Table 2.2.1. Required inputs for the floor heating energy input control submodule 

Variable name Notation Description 

Energy input references for 

floor heating/cooling (one or 

several, depending whether 

more rooms are handled at 

once for coordination reasons) 

𝐸refT  

(noted herein as 𝑢𝑡|𝑡∗ ) 

Energy input command for floor 

heating/cooling that needs to be 

followed, computed by MPC 

module on the zone level 

Parameters of the simplified 

building thermal dynamics 

model (one or several, 

depending whether more 

rooms are handled at once for 

coordination reasons) 

𝐴𝑟𝑜𝑜𝑚, 𝐵𝑟𝑜𝑜𝑚,  𝐶𝑟𝑜𝑜𝑚, 𝐷𝑟𝑜𝑜𝑚 

 (noted herein as  𝐴𝑏 , [𝐵𝑑 , 𝐵𝑢]  𝐶𝑏 , 𝐷𝑏) 

Model obtained through the 

identification procedure of the 

building. 

Parameters of the floor 

heating model that relates 

valve actuation, room 

temperature  and medium 

conditions registered on a 

calorimeter to heating/cooling 

energy transmitted to room 

air in a defined time period 

(one or several, depending 

whether more rooms are 

handled at once for 

coordination reasons) 

𝐴fhc(𝑉x), 𝐵fhc(𝑉x), 𝐶fhc(𝑉x), 𝐷fhc(𝑉x) 

Model obtained through the 

identification procedure of the 

floor heating/cooling unis system. 

Current set point temperature 

/ comfort set point (one or 

several, depending whether 

more rooms are handled at 

once for coordination reasons) 

SP0 

Needed to check whether the 

user has changed a set point in 

order to quickly adapt to the new 

set point (on a sampling time 

lower than the sampling time of 

MPC) 

Set point used for the 

particular time and 

zone/zones in last MPC 

computation of the required 

thermal input from 

heating/cooling elements 

SPMPC 

Needed to check whether the 

user has changed a set point in 

order to quickly adapt to the new 

set point (on a sampling time 

lower than the sampling time of 

MPC) 

Currently estimated heat 

disturbance for the zone (one 

or several, depending whether 

more rooms are handled at 

once for coordination reasons) 

𝐸0D 

 

(noted herein as 𝐸d,0) 

Needed to correct the required 

thermal heat input from 

actuators if the estimated 

disturbance has changed from the 

time of MPC computation 

Heat disturbance for the zone 

used by the central zone MPC 

algorithm  𝐸𝑑,𝑡|𝑡CMPC 

 

Needed to correct the required 

thermal heat input from 

actuators when heat disturbance 

for the zone used by the central 

MPC algorithm deviates from the 

real currently estimated heat 
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disturbance. 

 

Table 2.2.2: Outputs of the floor heating/cooling energy input control submodule 

Submodule outputs 

Computed current commands 

to valve actuators 

Vx0 

Command to be applied to the 

valve/valves of floor 

heating/cooling (one or several, 

depending whether more 

rooms are handled at once for 

coordination reasons) 

 

2.3 MPC approach and methodology 

The main idea behind this model predictive control approach for the particular zone in the building is 

to follow the central model predictive control that calculates the optimal thermal energies per zone 

for the whole building. In other words our locally distributed MPC controllers are used as a 

relationship between the commanded variables from the central MPC controller and thermal 

actuation profile on a floor heating/cooling system. If our central MPC controller sets a command to 

generate a particular quantity of thermal energy into the zone, our local MPC controller needs to find 

the most effective way to set the floor heating/cooling valves needed to generate the commanded 

thermal energy.  

When designing the local MPC controller it is crucial that it needs to operate on a scale that is lower 

than a scale of a central MPC controller. The problem that can happen with the floor heating/cooling 

system is related to the slow dynamic properties of a system. In the case of floor heating/cooling the 

process is relatively long in comparison with the quarter-hourly scale of the central MPC controller. 

The idea is to set the scale of the local MPC controller to 15 minutes, same as the hourly scale of the 

central MPC. 

In the deliverable for the identification of the floor heating/cooling unit system the mathematical 

model of the floor heating/cooling system has been developed based on the inputs such as inlet 

water temperature, outgoing water temperature, valve actuation and air temperature in the room. 

The output of the mathematical model is given in a form of thermal power affecting the zone (room). 

The algorithm for the local MPC controller needs to predict the future system behaviour based on 

the given mathematical model.  The control actions for the floor heating/cooling have to be decided 

upon the predicted behaviour of the system. 

There are some crucial tasks that we expect from our local MPC controller to satisfy. The first 

condition to fulfil is to maintain the temperature inside the temperature comfort limits which are 

given as an input from the end user (3-1). 

                                          𝑆𝑃𝑘 − 𝛥𝑘 ≤  𝑇𝑎,𝑘+𝑖𝑖 ≤ 𝑆𝑃𝑘 + 𝛥𝑘  
(2-1) 
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Second condition for locally distributed MPC controller is to follow the energy profile requested by 

the central MPC controller during its hourly scale. It would be ideal situation to follow the energy 

profile reference perfectly.  

The central MPC controller should be aware what is the minimal and maximal amount of energy that 

floor heating/cooling system can transmit in to the zone in one central MPC interval.  

At the beginning of 15 minute interval the central MPC should set the energy profile reference 

according to the energy limitations of the floor heating/cooling system. Since the valves installed on 

to the pipes of the system are PWM actuators, local MPC controller will calculate the best possible 

degree of valve actuation for the following 15 minutes (central MPC interval). This calculation will be 

carried out based on the mathematical model of the floor heating/cooling system. 

The mathematical model of the floor heating/cooling system will first be calculated for the medium 

mass flow that is at 50 % of the maximal mass flow that can be used within the system based on the 

equation (3-2). 

𝑚𝑤𝑐𝑤 𝑑𝑇𝑤,𝑜𝑢𝑡𝑑𝑡 = {𝑄𝑤𝑐𝑤(𝑇𝑤,𝑖𝑛 − 𝑇𝑤,𝑜𝑢𝑡) − 𝑈0(𝑇𝑤,𝑜𝑢𝑡 − 𝑇𝑎𝑖𝑟)𝑛        𝑄𝑤 ≠ 0,𝑈0(𝑇𝑤,𝑜𝑢𝑡 − 𝑇𝑎𝑖𝑟)𝑛                                                      𝑄𝑤 = 0, (2-2) 

 

 Then the predicted energy transmitted into the zone is going to be calculated based on the equation 

(3-3). 

∫ 𝑈0(𝑇𝑤,𝑜𝑢𝑡 − 𝑇𝑎𝑖𝑟)𝑛𝑑𝑡.𝑇𝑑
0  

(2-3) 

 

The local MPC algorithm should in the first moment as it gets the energy profile command from 

central MPC controller compare it with the energy profile predicted for the interval with the valve 

opening set at 50 % of the maximum. Based on the comparison the algorithm is going to decide 

whether the valve opening is going to get into the interval (50%-100%) or (0%-50%). Depending on 

the chosen interval of medium mass flow percentage the best possible command is going to be 

calculated so that the predicted energy profile transmitted into the zone is as close as possible to the 

one requested from the central MPC controller. So initially the interval [0%-100%] is halved and then 

the counter goes through the first [0%-50%] or the second [50%-100%] to find the optimal value of 

the valve openness. 

After the value of the valve openness for the following 15 minutes has been calculated in the first 

few second of the CMPC interval the local MPC algorithm is going to send the actuation command to 

the valve. In order to avoid potential disturbances to the energy profile in the zone the feedback loop 

is going to be used in the local MPC algorithm. This feedback loop is going to be called every minute 

so the algorithm will have the possibility to send 15 different valve actuation commands during one 

central MPC interval. 
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3 Submodule for radiators module interface (Z.I.2) 

3.1 Introduction  

Panel radiators are water to air heat exchangers, designed to satisfy requirements of heating 

demand typically for rooms. The radiator heats up the surrounding environment by following the 

mechanism of convection and radiation. Model predictive control of HVAC systems implies a group of 

advanced control methods that optimize the heating and/or cooling heating system parameters 

(usually every hour) for the selected time period (typically 24 hours), depending on predicted 

weather conditions and the way of using the building, primarily with the aim of reducing total 

consumption or energy costs while meeting the conditions of thermal comfort.  

 

3.2 Module interface 

Table 3.3.1: Required inputs for the radiators energy input control submodule 
  

Radiators energy input control submodule 

Frequency of submodule calls: every minute 

Variable name Variable annotation Variable description 

Submodule inputs 

Energy input references for 

radiators (one or several, 

depending whether more 

rooms are handled at once for 

coordination reasons) 

0

T
E  

Energy input command for 

radiators that needs to be 

followed, computed by MPC 

module on the zone level 

Parameters of the simplified 

building thermal dynamics 

model (one or several, 

depending whether more 

rooms are handled at once for 

coordination reasons) 

Aroom,Broom,Croom,Droom 

Model obtained through the 

identification procedure 

Parameters of the radiators 

model that relates radiators 

actuation, room temperature  

and medium conditions 

registered on a calorimeter to 

radiators energy transmitted to 

room air in a defined time 

period (one or several, 

depending whether more 

rooms are handled at once for 

coordination reasons) 

Arad (𝑉x) 

Brad (𝑉x) 

Crad (𝑉x) 

Drad (𝑉x) 

Model obtained through the 

identification procedure 

Current setpoint temperature / 

comfort setpoint (one or 

several, depending whether 

more rooms are handled at 

once for coordination reasons) 

SP0 

Needed to check whether the 

user has changed a setpoint in 

order to quickly adapt to the 

new setpoint (on a sampling 

time lower than the sampling 

time of MPC) 

Setpoint used for the particular SPMPC Needed to check whether the 
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time and zone/zones in last 

MPC computation of the 

required thermal input from 

heating/cooling elements 

user has changed a setpoint in 

order to quickly adapt to the 

new setpoint (on a sampling 

time lower than the sampling 

time of MPC) 

Currently estimated heat 

disturbance for the zone (one 

or several, depending whether 

more rooms are handled at 

once for coordination reasons) 

0

D
E  

Needed to correct the required 

thermal heat input from 

actuators if the estimated 

disturbance has changed from 

the time of MPC computation 

Heat disturbance for the zone 

used by the central zone MPC 

algorithm 𝐸𝑑,𝑡|𝑡CMPC 

 

Needed to correct the required 

thermal heat input from 

actuators when heat 

disturbance for the zone used 

by the central MPC algorithm 

deviates from the real currently 

estimated heat disturbance. 

 

 

Table 3.3.2: Outputs of the radiators energy input control submodule 

 

Submodule outputs 

Computed current commands 

to valve actuators 

Vx0 

Command to be applied to the 

valve/valves of radiators (one 

or several, depending whether 

more rooms are handled at 

once for coordination reasons) 

 

3.3 Methodology 

The proposed zone level optimal energy management consists of two hierarchical control levels. 

Higher optimization level consists of CMPC for calculation of optimal thermal energy profile per zone 

for all observed zones. Lower hierarchical level consists of locally-distributed controllers (LMPC), one 

per each zone, employed to control thermal actuators in an optimal way by respecting the 

commands given by the higher control level [1].  
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Figure 3.3.1: Concept of MPC 

The algorithm for the LMPC needs to predict the future system behaviour based on the given 

mathematical model.  The control actions for the radiators have to be decided upon the predicted 

behaviour of the system. The LMPC has to keep the zone temperature in the limits which are given 

by the user:                                           𝑆𝑃𝑘 − 𝛥𝑘 ≤ 𝑇𝑎,𝑘+𝑖𝑖 ≤ 𝑆𝑃𝑘 + 𝛥𝑘                                                          (3 − 1)   
Second condition for LMPC is to follow the energy profile requested by the CMPC during its 15 

minute scale. The CMPC every 15 minutes calculates the needed energy profile for each zone and 

sends it to the LMPC.  So at the beginning of every 𝑇𝑠𝑐-long time-interval, LMPC receives an energy 

command from the CMPC and the information about the valve position at the beginning of the 

interval (xV= 0 or 1) from the sensor. LMPC needs to calculate how long the valve has to remain open 

or closed (regarding the valve position at the beginning) during the 𝑇𝑠𝑐-long time-interval to satisfy 

the energy request given by CMPC. The bisection method is used by LMPC in order to find the 

needed time. The interval is repeatedly being bisected and then the interval in which energy must lie 

for further processing is selected. The calculation continues until the appropriate time is found for 

which the valve has to stay in on or off position. LMPC operates on a minute time scale TS= 1 min so 

in every minute during the 15 minutes interval it calculates how much energy has been transfered 

from the radiator to the zone since the beginning of the 𝑇𝑠𝑐-long time-interval. LMPC makes a 

subtraction of overall energy request and transfered enegry until that moment and calculates how 

long the valve needs to remain open or closed to see if there is difference from the previous 

calculations during the interval. The overall algorithm for the MPC energy management of radiators 

is given in Algorithm 1. 

It is expected that a narrow band of energies is feasible for the energy input control. Boundaries are 

represented with Xv=0 the entire sample and Xv=1 the entire sample while taking into account the 

current state of the radiator actuator. 

 

Algorithm 1: The LMPC algorithm for the radiator energy input control 

 

collect new measurements 𝑄w, 𝑇win, 𝑇ain, 𝑇wout, 
define sensibility region (s.r.) around the energy input from the CMPC, 
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receive energy command from the CMPC, receive starting valve position (xv= 0 or 1), set 

the first and the last moment of prediction horizon (t1=0 and t2=15 min) 

 

if xV==1 

 

  while ((t2-t1)>1) calculate predicted 𝑇wout and energy 𝐸t,rad transmitted in to the zone in 

the current CMPC 15-minutes and calculate 𝑡𝑖𝑛𝑡 = 𝑡1+𝑡22   where Qw=1 for the interval [0, 𝑡𝑖𝑛𝑡] and Qw=0 for the interval [𝑡𝑖𝑛𝑡 , 15] 

 

      if 𝐸t,rad > 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑓𝑟𝑜𝑚 𝐶𝑀𝑃𝐶 + 𝑠. 𝑟.   then 

       set 𝑡2 = 𝑡𝑖𝑛𝑡 ,                   

 

      else if 𝐸t,fh < 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑓𝑟𝑜𝑚 𝐶𝑀𝑃𝐶 − 𝑠. 𝑟.   then 

       set 𝑡1 = 𝑡𝑖𝑛𝑡, 

 

      else 

      break 

 

      end if 

   end while 

 

 

else 

 

  while ((t2-t1)>1) calculate predicted 𝑇wout and energy 𝐸t,rad transmitted in to the 

zone in the current CMPC 15-minutes and calculate 𝑡𝑖𝑛𝑡 = 𝑡1+𝑡22   where Qw=1 for 

the interval [0, 𝑡𝑖𝑛𝑡] and Qw=0 for the interval [𝑡𝑖𝑛𝑡, 15] 

 

    if 𝐸t,rad > 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑓𝑟𝑜𝑚 𝐶𝑀𝑃𝐶 + 𝑠. 𝑟.   then 

     set 𝑡1 = 𝑡𝑖𝑛𝑡 ,                   

 

    else if 𝐸t,fh < 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑓𝑟𝑜𝑚 𝐶𝑀𝑃𝐶 − 𝑠. 𝑟.   then 

     set 𝑡2 = 𝑡𝑖𝑛𝑡, 

 

    else 

    break 

 

    end if 

  end while 

end if 
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Executive summary 

Integrated energy management of buildings and grids installed with the 3Smart project is on the side 

of buildings divided into three vertical levels – zone level, central HVAC system level and microgrid 

level. In each of these levels the energy management algorithms are classified into three parts – (i) 

prediction and estimation, (ii) model predictive control, and (iii) equipment interfacing -- and the 

algorithms are implemented via a sequence of submodules. 

The submodules are designed, commissioned and tested on different pilot buildings in the Danube 

region. 

Within this deliverable the focus is put on central HVAC system level prediction and estimation 

submodules.  

Each submodule is presented via an interfacing table that explains what data are used by the 

submodules as inputs and what are the final output data. The algorithms behind are in more detail 

explained in the annexed document. 
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1 Introduction 

Within the 3Smart project the following estimation and prediction submodules are designed, 

commissioned and tested on the central HVAC system level: 

HVAC.PE.1 – submodule for estimation of a heat pump model in off-line operation mode and for 

estimation of energy consumption of the heat pump in on-line operation mode (tested in UNIZGFER, 

HEP, STREM retirement and care centre, EPHZHB and EON pilot buildings within 3Smart);  

HVAC.PE.2 -- submodule for estimation of a thermal losses/gains model and a flow shares model of a 

piping system in off-line operation mode and for estimation of thermal losses/gains and flows in on-

line operation mode (tested in UNIZGFER, HEP, IDRIJA school and sports centre, STREM school, 

STREM retirement and care centre, EPHZHB building and EON pilot buildings within 3Smart); 

HVAC.PE.3 -- submodule for estimation of an energy consumption model of a circulation pump in the 

central HVAC system in off-line operation mode and for estimation of circulation pump electricity 

consumed in on-line operation mode (tested in UNIZGFER pilot building within 3Smart); 

HVAC.PE.4 – submodule for estimation of a prediction model for non-controllable heat consumption 

in the building in off-line operation and for prediction of non-controllable heat consumption in on-

line operation (tested in UNIZGFER, HEP, IDRIJA school and sports centre buildings, STREM school, 

STREM retirement and care centre, EPHZHB and EON pilot buildings within 3Smart). 

In the following chapters the mentioned submodules are presented with their interface tables 

showing which data they use as inputs and which data they provide as outputs to be at the disposal 

to other submodules. Detailed explanations of algorithms behind each of the submodules are 

provided in the previously delivered 3Smart document D4.3.1 (related to prediction and estimation). 

Based on feedback from pilots, D4.3.1 is further updated and here provided as Annex 1. 

Source and sink for the data used by submodules is a properly structured 3Smart database. Its 

structure in the part concerned by the central HVAC system level prediction and estimation 

submodules is provided in Annex 2. 

2 HVAC.PE.1 submodule 

HVAC.PE.1 submodule is used for estimation of a heat pump model in off-line operation mode and 

for estimation of energy consumption of the heat pump in on-line operation mode. Within 3Smart it 

is tested in UNIZGFER, HEP, STREM retirement and care centre, EPHZHB and EON pilot buildings. 

The submodule interface is defined in Table 2.1 and Table 2.2. 

  

Table 2.1: Required inputs for the HVAC.PE.1 submodule. 

Parameter Description Format 

 Temperature of the medium Historical sequence of data with  out

w   °CT
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coming out of the heat pump time-stamps, minutely sampled 

 Temperature of the medium 

coming into the heat pump 

Historical sequence of data with 

time-stamps, minutely sampled 𝐸e,hp[kWh] Electrical energy consumption 

of the heat pump 

Historical sequence of data with 

time-stamps, minutely sampled 𝑄s  [m3/h]  Medium flow through the heat 

pump 

Historical sequence of data with 

time-stamps, minutely sampled 𝑇env[°C] Temperature of the 

environment 

Historical sequence of data with 

time-stamps, minutely sampled 

 

Outputs: 

Table 2.2: Outputs for the HVAC.PE.1 submodule. 

Parameter Description Format γp[−] Factor-obtained from equation 

2.9 

seasonal averaged value 

 

On-line operation of the module (compute the estimated electricity consumption of the heat pump 

by applying the identified COP model with 𝛾𝑝, for monitoring purposes, runs each minute) 

Inputs: 

Parameter Description Format 𝑇s[°C] Temperature of the medium 

coming out of the heat pump 

current, minutely sampled 

 𝑇w,hpin [°C] Temperature of the medium 

coming into the heat pump 

current, minutely sampled 

 γp Factor The value obtained by the off-

line operation of module 𝑄s  [m3/h]  Medium flow through the heat 

pump 

current, minutely sampled 

 𝑇env[°C] Temperature of the 

environment 

current, minutely sampled 

 

 

Outputs: 

Parameter Description Format 𝐸e,hp[kWh] Estimated electricity 

consumption of the heat pump 

 

current 

 

 

  

 in

w   °CT
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3 HVAC.PE.2 submodule 

HVAC.PE.2 submodule is used for estimation of a thermal losses/gains model and a flow shares 

model of a piping system in off-line operation mode and for estimation of thermal losses/gains and 

flows in on-line operation mode. Within 3Smart it is tested in UNIZGFER, HEP, IDRIJA school and 

sports centre, STREM school, STREM retirement and care centre, EPHZHB building and EON pilot 

buildings. 

The submodule interface is defined in Table 3.1 and Table 3.2. 

Table 3.1: Inputs for HVAC.PE.2 submodule 

Parameter Description Format 𝑇s[°C] Temperature of the medium 

coming out of the heat pump 

Historical sequence of data with 

time-stamps, minutely sampled 𝑇w,hpin [°C] Temperature of the medium 

coming into the heat pump 

Historical sequence of data with 

time-stamps, minutely sampled 𝑄s  [m3/h]  Medium flow through the heat 

pump 

Historical sequence of data with 

time-stamps, minutely sampled 𝑇w,cal,iin [°C] Measured temperature at the 

medium entrance into the floor 

segment i 

Historical sequence of data with 

time-stamps, minutely sampled 𝑇w,cal,iout [°C] Measured temperature at the 

medium exit from the floor 

segment i 

Historical sequence of data with 

time-stamps, minutely sampled 𝑄w,cal,i  [𝑚3/h]  Measured input/output flow for 

the floor segment i 

Historical sequence of data with 

time-stamps, minutely sampled 

Piping data   

Roughly estimated temperature 

of the space through which the 

pipes run 

Roughly estimated c through 

which the pipes run 
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Table 3.2: Outputs of the HVAC.PE.2 submodule 

Parameter Description Format 

Parameters of the temperature 

drop/rise model on the supply 

line for each of the floor 

segments i (one model for each 

i) 

 

The parameters calculated 

based on equation 3.18 from 

Annex 1 

Output for the 3Smart database 

Parameters of the temperature 

model for return temperature 

into the central system based 

on floor segments outgoing 

temperatures and flows 

 

The parameters calculated 

based on equation 3.18 from 

Annex 1 

Output for the 3Smart database 

𝛼𝑖  Parameters for flow shares 

 

Output for the 3Smart database 

4 HVAC.PE.3 submodule 

HVAC.PE.3 submodule is used for estimation of an energy consumption model of a circulation pump 

in the central HVAC system in off-line operation mode and for estimation of circulation pump 

electricity consumed in on-line operation mode (tested in UNIZGFER pilot building within 3Smart). 

The submodule interface is defined in Table 4.1 and Table 4.2.  

Table 4.1: Inputs for the HVAC.PE.3 module 

INPUT  FORMAT 

p s( )f Q   total pump efficiency obtained 

by fitting the curve which is 

provided by the pump 

manufacturer 

Pump data 

 p Pap   Measurement of pressure 

drop;  

Historical data, minutely 

sampled 

3

s m /hQ     Measurement of flow Historical data, minutely 

sampled 

 

Table 4.2: Ouptuts of the HVAC.PE.3 module 

OUTPUT  FORMAT 

  3

s s proportional to f Q Q   Parameters of the electrical 

energy consumption model 

The procedure for parameters 

identification is implemented 

in Python 
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5 HVAC.PE.4 submodule 

HVAC.PE.4 is a submodule used for estimation of a prediction model for non-controllable heat 

consumption in the building in off-line operation and for prediction of non-controllable heat 

consumption in on-line operation. Within 3Smart it is tested in UNIZGFER, HEP, IDRIJA school and 

sports centre buildings, STREM school, STREM retirement and care centre, EPHZHB and EON pilot 

buildings.  

The module interface is provided with the following tables. 

Table 5.1: Required inputs for non-controllable consumption prediction submodule. 

Variable name Variable annotation Variable description 

Historical profile of the non-

controllable energy 

consumption on the central 

HVAC unit 

𝐸t,nc 

Non-controllable thermal 

energy consumption on the 

HVAC level 

Weather measurements 

UNIZG-FER pilot site: 𝑇env, 𝐼diffℎ , 𝐼dirn  

Remaining pilot sites: 𝑇env, 𝐼gloℎ , 𝐼glot  

Measured weather variables: 

temperature, diffuse 

horizontal and direct normal 

irradiance (UNIZG-FER site), 

global horizontal and tilted 

global irradiance (remaining 

sites). 

Weather predictions (𝑇env)N, (𝐼dirn )N, (𝐼diffh )N 

Forecasted weather variables 

(temperature, direct normal 

and diffuse horizontal 

irradiance). 

Time indicators 𝜏 

Variables representing time of 

the day, time of the week and 

day of the year. Calculated 

from current and historical 

datetimes. 
 

Table 5.2: Outputs of the non-controllable consumption prediction submodule. 

Variable name Variable annotation Variable description 

Prediction model parameters 

(for off-line operation of the 

submodule) 

𝜃t,nc 
Needed for on-line operation 

of the submodule. 

Predicted non-controllable 

heating/cooling energy 

consumption evolution (for 

on-line operation of the 

submodule) 

(𝐸t,nc)N 
Needed for the MPC module 

on the central HVAC level 
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Annex 2 – 3Smart database organization for open software module 

for the central HVAC system level management – Estimation and 

prediction submodules 

HVAC.PE.1 Input/output data database structure: 

  

Heat pump model - current

FK. HeatPumpID Int

PK. HeatPumpModelID Int

Timestamp DateTime

Heat pump COP parameters varchar(400)

Temperature of the medium coming out of the 
heat pump  

Real

Temperature of the medium coming into the 

heat pump  
Real

Factor param.

Medium flow through the heat pump   Real

Temperature of the environment  Real

Heat pump commands output - current

FK. HeatPumpID Int

Timestamp DateTime

Ref. for the outgoing medium temp. - No. 43 real

Reference for the outgoing medium flow real

Heat pump measurements - current

FK. HeatPumpID Int

Timestamp DateTime

Heat pump incoming medium temp. - No. 41 Real

Heat pump outgoing medium temp. - No. 42 Real

Heat pump compressor measurements - current

PK. CompressorID Int

FK.HeatPumpID Int

Timestamp datetime

Load - No. 44-47 varchar(50)

Line current - No. 44-47 varchar(50)

Line voltage - No. 48 varchar(50)

Heat pump MPC outputs - current

FK. HeatPumpID Int

Timestamp datetime

Current outgoing medium temperature 
reference

real

Current outgoing medium flow reference real

Outgoing medium temperature profile varchar(1000
)

Outgoing medium flow profile varchar(1000
)

Local characterization of the value function varchar(1000
)

Predicted electrical energy consumption profile varchar(1000
)

Heat pumps

FK. Pilot block ID int

PK. HeatPumpID Int

Description varchar(200)

Heat pump commands output - history

FK. HeatPumpID Int

PK. Unique history ID uint64

Timestamp DateTime

Reference for the outgoing medium 
temperature - No. 43

real

Reference for the outgoing medium flow real

Heat pump measurements - history

FK. HeatPumpID Int

PK. Unique history ID uint64

Timestamp DateTime

Heat pump incoming medium temperature - 
No. 41

Real

Heat pump outgoing medium temperature - 
No. 42

Real

Heat pump compressor measurements - history

PK. CompressorID Int

FK.HeatPumpID Int

PK. Unique history ID uint64

Timestamp datetime

Load - No. 44-47 varchar(50)

Line current - No. 44-47 varchar(50)

Line voltage - No. 48 varchar(50)

Heat pump MPC inputs - current

FK. HeatPumpID Int

Optimized heating/cooling energy profile varchar(1000
)

Optimized temperature profile varchar(1000
)

Temp. profile and h/c energy profile timestamp datetime

Critical region for HVAC varchar(400)

Cost function for HVAC varchar(400)

CR and cost function timestamp datetime

Outdoor temperature forecast varchar(1000
)

Outdoor temp. forecast timestp. datetime

Heat pump efficiency model varchar(400)

Heat pump eff. model timestamp datetime

FCU mathematical model varchar(1000
)

FCU math. model timestamp datetime

Pipework heating/cooling energy loss model varchar(1000
)

Pipework energy loss mdl. times. datetime

Non-controllable heating/cooling cons. pred. varchar(1000
)

Non-contr. h/c cons. pred. times. datetime

Optimal heating/cooling energy profile varchar(1000
)

Heat pump commands input - current

FK. HeatPumpID Int

Timestamp DateTime

Current outgoing medium temp. reference real

Outgoing medium temperature profile real

Heat pump MPC outputs - current

FK. HeatPumpID Int

PK. Unique history ID uint64

Timestamp datetime

Current outgoing medium temperature 
reference

real

Current outgoing medium flow reference real

Outgoing medium temperature profile varchar(1000)

Outgoing medium flow profile varchar(1000)

Local cost for zone varchar(1000)

Feasible region for zone varchar(1000)

Predicted electrical energy consumption 
profile

varchar(1000)

Heat pump model - history

FK. HeatPumpID Int

PK. HeatPumpModelID Int

PK. unique_history_id uint64

Timestamp DateTime

Heat pump COP parameters varchar(400)

Temperature of the medium coming out of the 
heat pump   

Real

Temperature of the medium coming into the 
heat pump  

Real

Electrical energy consumption of the heat pump   Real

Medium flow through the heat pump  Real

Temperature of the environment  Real

Heat pump online module outputs - current

FK. HeatPumpID Int

Timestamp DateTime

Estimated thermal energy output of the heat 
pump.

Real

Heat pump online module outputs - history

FK. HeatPumpID Int

Timestamp DateTime

Estimated thermal energy output of the heat 
pump.

Real



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 – Final building-side energy management software module – estimation and prediction, HVAC level 
 

 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  11 
 

HVAC.PE.2 Input/output data database structure:  

 

pipework

FK. Pilot block ID int

PK. PipeworkID Int

Description varchar(200)

pipework model inputs

FK. PipeworkID Int

Timestamp DateTime

Temperature of the medium coming out of the 
heat pump 

Real

Temperature of the medium coming into the 
heat pump 

Real

Medium flow through the heat pump Real

 Measured temperature at the medium 
entrance into the floor segment i 

Real

 Measured temperature at the medium exit 
from the floor segment i 

Real

Measured input/output flow for the floor 
segment i 

Real

pipework model

FK. PipeworkID Int

FK. CalorimeterID Int

PK. PipeworkModelID Int

Timestamp DateTime

The parameters calculated based on
presentation in file 
3Smart_HEP_TT_March_HVAC.PE.2.pptx

Param.

Parameters for flow shares Param.

pipework model outputs

FK. PipeworkID Int

Timestamp DateTime

Estimated (based on the model) temperatures 
(calorimeters/zone elements)

Real

Estimated return medium temperature (at the 
heat pump input)

Real

Estimated flows (calorimeters) Real

pipework model outputs history

FK. PipeworkID Int

PK. unique_history_id uint64

Timestamp DateTime

Estimated (based on the model) temperatures 
(calorimeters/zone elements)

Real

Estimated (based on the model) temperatures 
(calorimeters/zone elements)

Real

Estimated flows (calorimeters) Real
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HVAC.PE.3 Input/output data database structure: 

 

  

pipework

FK. Pilot block ID int

PK. PipeworkID Int

Description varchar(200)

pipework model inputs

FK. PipeworkID Int

Timestamp DateTime

Temperature of the medium coming out of the 
heat pump 

Real

Temperature of the medium coming into the 
heat pump 

Real

Medium flow through the heat pump Real

 Measured temperature at the medium 
entrance into the floor segment i 

Real

 Measured temperature at the medium exit 
from the floor segment i 

Real

Measured input/output flow for the floor 
segment i 

Real

pipework model

FK. PipeworkID Int

FK. CalorimeterID Int

PK. PipeworkModelID Int

Timestamp DateTime

The parameters calculated based on
presentation in file 
3Smart_HEP_TT_March_HVAC.PE.2.pptx

Param.

Parameters for flow shares Param.

pipework model outputs

FK. PipeworkID Int

Timestamp DateTime

Estimated (based on the model) temperatures 
(calorimeters/zone elements)

Real

Estimated return medium temperature (at the 
heat pump input)

Real

Estimated flows (calorimeters) Real

pipework model outputs history

FK. PipeworkID Int

PK. unique_history_id uint64

Timestamp DateTime

Estimated (based on the model) temperatures 
(calorimeters/zone elements)

Real

Estimated (based on the model) temperatures 
(calorimeters/zone elements)

Real

Estimated flows (calorimeters) Real
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HVAC.PE.4. input/output data database structure 

Input data database structure: 

 

Figure 1. Current and historical non-controllable thermal energy consumption data database structure. 
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Figure 2. Weather measurements data database structure. 

 

Figure 3. Weather forecast data database structure. 

Output data database structure: 

 

Figure 4. Current and historical non-controllable thermal energy predictions data database tables. 
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Executive summary 

This document as annex to D4.5.3 of central HVAC system prediction and estimation 

submodules focusses on the background logic of individual modules. 

Heat pump system module was developed for the air/water heat pump which is used in the 

pilots of this project. Basic equations for heat pump system operating according to ideal 

Carnot cycle are presented for both heating and cooling mode.  

Pipework heat losses/gains module was developed to provide precise regulation of 

heating/cooling units within buildings of the pilots from two different aspects, theoretical 

and practical. Conceptual project is based on theoretical equations for heat exchange 

between the fluid in the pipe and surrounding atmosphere, while the practical approach 

uses empirical equations provided for the heat losses of insulated and non-insulated pipes in 

the central heating systems. 

Variable speed pump module was developed to ensure energy savings in central heating 

systems of the pilot buildings. Circulation pump was considered for two different cases 

(operation modes): Case1 - with fan coils (FCs) as heating/cooling zone devices and Case 2 - 

with radiators or floor heating/cooling zone devices.  Mathematical equations for these 

cases are provided. 

Prediction of the total non-controllable energy consumption submodule provides 

assessment of heating and cooling loads based on historical time series of consumption data 

and other influential variables.  
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1 Introduction  

This report focusses on central HVAC system improvement through smart metering and 

control of water flow rate and supply temperature. Mathematical and numerical models are 

developed to assess the behavior of the system. Sub models for heat pump system, thermal 

losses in piping and variable frequency drive (VFD) for circulation pump are considered as 

vital for efficient operation of the central HVAC system within a holistic building energy 

management. 

2 Heat pump system (HVAC.PE.1) 

Heat pump system is one part of the central HVAC system providing heating and cooling of 

the building depending on its design and implementation. 

2.1 Theoretical background 

Heat pump is used to extract energy from the cold outdoors and carry it into the warm 

indoors as presented in Figure 2.1. The measure of performance of a heat pump is expressed 

by the coefficient of performance (COPHP).  

 

Figure 2.1: General concept of a heat pump system 
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Each heat pump system (Figure 2.2 and Figure 2.3) consists of the following main parts: 

1. compressor; 

2. condenser; 

3. expansion valve; 

4. evaporator.  

The most widely used type of heat pumps is air/water heat pump which is used in the pilots 

of the 3Smart project. General layout of a heat pump system operating in the heating cycle 

is presented in Figure 2.2. The heat pump transfers heat energy from the heat source 

(outdoor air) to the heat sink (water from heating system of the building).  Indoor unit is 

operating as a condenser and outdoor as an evaporator. 

More detailed description of the heat pump system operating in heating mode is presented 

in Figure 2.3. 

 

 

Figure 2.2: A general layout of a heat pump system operating in the heating cycle 

 

Figure 2.3: Detailed description of a heat pump system operating in the heating mode [1] 

A general layout of a heat pump system operating in the cooling cycle is presented in Figure 

2.4. The heat pump transfers the heat from the building (heat source) to the ambient air 
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(heat sink). The evaporator is located at the building side (indoor unit), while the condenser 

is located at the outdoor side (outdoor unit). 

 

Figure 2.4: A general layout of a heat pump system operating in the cooling cycle 

More detailed description of a heat pump system operating in the cooling mode is 

presented in Figure 2.5. 

Figure 2.5: Detailed description of a heat pump system operating in the cooling mode [1] 
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There are numerous standards developed for testing and rating heat pumps, ISO and EN. 

Base EN standard covering heat pump with electrically driven compressors for space heating 

and cooling is EN 14511 series of standards (4 parts). Base ISO standard for heat pumps is 

ISO 13612 (2 parts). 

Heat pump systems dimensioning according to ISO 13612 is presented in Figure 2.6. 

 

Figure 2.6: Algorithm for dimensioning of a heat pump systems according ISO 13612 
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For operation in both modes the compressor uses electric energy (𝐸𝑒,ℎ𝑝) to provide 

mechanical work for transfer of the heat from the heat source to the heat sink. The heat 

exchanged between the heat pump and the working medium is denoted as 𝐸𝑡,ℎ𝑝. 

The coefficient of performance of heat pump (COP) is defined as the ratio of the desired 

transferred heat and the electrical energy consumption of the heat pump by the heat pump 

compressor. In the analyzed case the useful heat effect is 𝐸𝑡,ℎ𝑝, thus COP is defined as: 

𝐶𝑂𝑃 = 𝐸𝑡,ℎ𝑝𝐸𝑒,ℎ𝑝 
(2.1) 

There are many types of heat pumps differed by the heat transfer medium. Good general 

approximation of a heat pump, independent from the heat transfer medium can be 

obtained using the theoretical Carnot cycle which operates between the corresponding 

temperatures (heat source/heat sink). This approximation is presented below. 

2.2 Carnot Cycle heat pump model and algorithm 

In the project case the corresponding temperatures are the mean temperature of water (𝑇𝑚) 

that flows through the heat exchanger and the temperature of the environment (𝑇𝑒𝑛𝑣) (air 

temperature). Carnot cycle in T-S diagram, where T is temperature and S is entropy, is 

presented in Figure 2.7 and Figure 2.8. 

 

Figure 2.7: Carnot cycle in T-S diagram -Heating 
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Figure 2.8: Carnot cycle in T-S diagram - Cooling 

 

For heating mode the inlet water temperature is calculated as: 

 

𝑇w,hpin = 𝑇𝑠 − 3.6 ∙ 106𝐸t,hp4186 ∙ 𝑄s3.6 ∙ 𝑇d  [°C] 
 

(2.2) 

 

For cooling mode the inlet water temperature is calculated as: 

𝑇w,hpin = 𝑇s + 3.6 ∙ 106𝐸t,hp4186 ∙ 𝑄s3.6 ∙ 𝑇d  [°C] (2.3) 

 

The mean water temperature of the heat exchanger is calculated as: 

𝑇m = 𝑇w,hpin + 𝑇s2  [°C] (2.4) 
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Where: 𝑇m [°C] − temperature of the medium coming out of the heat pump 𝑇w,hpin  [°C] − temperature of the medium coming into the heat pump 𝑇s [°C]  − is the water temperature at the outlet of the heat exchanger  𝐸t,hp [kWh] – is delivered heat to the water in the heat exchanger   𝑇d[s]-sampling time 𝑄s [m3/h]- volume flow of the supplied medium 

 

The theoretical maximum efficiency of the heat pump is described by the Carnot efficiency 

[2]: 

 Carnot heat pump system – heating mode: 
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 Carnot heat pump system – cooling mode: 
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where 𝑇env [°C] is the measured environment temperature.  

The COP value of the real heat pump system can be estimated as a product of the COP of 

Carnot cycle and the factor 𝛾𝑝: 𝐶𝑂𝑃real = γp𝐶𝑂𝑃 (2.9) 

 

where the factor γp is about 0.5 [3] (the most efficient heat pump has the value of factor γp = 0.7 [4]). 

On the other hand, the heat exchanged between the medium and the heat pump (the 

energy balance of the heat pump’s exchanger on the medium side): 
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𝐸t,hp = 𝑄s3.6 ∙ 106 𝑐w𝜌w𝑇d|𝑇w,hpin − 𝑇s| [kWh] (2.10) 

where: 

𝑐w [ kJkgK] − is the specific heat capacity of the medium 

𝜌w [ kgm3] − is the density of the medium 

Finally, the electrical energy consumption of the heat pump can be obtained using COP of 

the real cycle: 

𝐸e,hp = 𝐸t,hp𝐶𝑂𝑃real  [kWh] (2.11) 

Graphical presentation of Carnot and real cycle COPs vs. environment temperature for both, 

heating and cooling mode is given in Figure 2.9.  Figure 2.10 represents the electric power of 

the heat pump system and heat transfer rate across the heat exchanger vs. environment 

temperature for both, heating and cooling mode. 

 

 

Figure 2.9: COP of Carnot and real cycle for heating and cooling mode 
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Figure 2.10: Electric power of the heat pump system and heat transfer rate across the heat exchanger as a 

function of environment temperature for heating and cooling mode 
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2.3 Algorithm for Carnot Cycle heat pump model 

 

 

 Figure 2.11: Algorithm for heat pump 
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Off-line operation of the module (linear regression which runs periodically using a historical 

sequence of data in order to compute the coefficient γp): 

Inputs: 

Parameter Description Format 

 Temperature of the medium 

coming out of the heat pump 

Historical sequence of data 

with time-stamps, minutely 

sampled 

 Temperature of the medium 

coming into the heat pump 

Historical sequence of data 

with time-stamps, minutely 

sampled 𝐸e,hp[kWh] Electrical energy 

consumption of the heat 

pump 

Historical sequence of data 

with time-stamps, minutely 

sampled 𝑄s  [m3/h]  Medium flow through the 

heat pump 

Historical sequence of data 

with time-stamps, minutely 

sampled 𝑇env[°C] Temperature of the 

environment 

Historical sequence of data 

with time-stamps, minutely 

sampled 

 

Outputs: 

Parameter Description Format γp[−] Factor-obtained from 

equation 2.9 

seasonal averaged value 

 

On-line operation of the module (compute the estimated electricity consumption of the 

heat pump by applying the identified COP model with 𝛾𝑝, for monitoring purposes, runs each 

minute) 

Inputs: 

Parameter Description Format 𝑇s[°C] Temperature of the medium 

coming out of the heat pump 

current, minutely sampled 

 𝑇w,hpin [°C] Temperature of the medium 

coming into the heat pump 

current, minutely sampled 

 γp Factor The value obtained by the 

off-line operation of module 𝑄s  [m3/h]  Medium flow through the 

heat pump 

current, minutely sampled 

 𝑇env[°C] Temperature of the 

environment 

current, minutely sampled 

 

 

  

 out

w   °CT

 in

w   °CT
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Outputs: 

Parameter Description Format 𝐸e,hp[kWh] Estimated electricity 

consumption of the heat 

pump 

 

current 

3 Heat losses/gains of the pipework (HVAC.PE.2) 

Heat losses/gains of the pipework are needed for exact control and regulation in 3Smart 

project.  Depending on insulation and pipelines length there could be temperature drop or 

rise of the heating/cooling fluid at the inlet of a heating/cooling element in a building zone 

related to the initial temperature generated in the central heating/cooling unit (heat pump 

or heat exchanger). Prediction of this temperature drop/rise is vital for accurate regulation 

of the heating/cooling power of the final consumers (fan coils or similar units). Further it is 

necessary to predict the thermal losses in the piping segment from the central unit to the 

input of all elements and from the output of the elements back to the central unit. 

3.1 Theoretical background 

The model contains iterative procedure for estimating the water outlet temperature. The 

description consists of the modelling procedure with main equations used in the model, the 

results obtained from the model for the “measured” dummy inputs and references. 

The process of heat transfer between fluid that flows through the pipework and surrounding 

(air) consists of:  

1. Heat transfer by convection between the fluid and the pipe wall 

2. Heat transfer by conduction through the pipe wall 

3. Heat transfer by conduction through the insulation (if exists) 

4. Heat transfer by convection at outside surface of pipework 

5. Heat exchange between pipework to surrounding. 

As a result of the fact that the outside surface temperature of the pipework is relatively low, 

heat transfer by radiation can be neglected. Furthermore, the pipe is thin and drop of the 

temperature is also small thus heat transfer by conduction through the pipe can be 

neglected. 
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Figure 3.1: Physical model 

The input parameters of the model are: 

1. 𝑡env −the measured environment (air) temperature, [°C] 

2. 𝛿 −the insulation thickness, [mm] 

3. 𝑘ins −thermal conductivity of the insulation , [W/mK] 

4. 𝑑 −inner diameter of the pipe, [mm] 

5. 𝐿 −the length of the pipe, [m] 

6. �̇�w −the measured mass flow rate of water through the pipe, [kg/s] 

7. 𝑡w,in −the measured water temperature at the inlet, [°C] 

The procedure is iterative, thus in the first step the outlet water temperature is assumed to 

be the same as the inlet water temperature, 𝑡w,out = tw,in. 

The mean water temperature is: 

𝑡w,mean = 𝑡w,in + 𝑡w,out2  [°C] (3.1) 

 

The water density at the mean water temperature [4]: 

𝜌 = 𝐴𝐵1+(1−𝑡w,mean+273.15 𝐶 )𝐷  [𝑘𝑔𝑚3] (3.2) 

 

The equation coefficients are: A=0.14395; B=0.0112; C=649.727; D=0.05107. 

The dynamic viscosity of water at the mean water temperature [6]: 

𝜇 = 2.414 ∙ 10−5 ∙ 10 247.8𝑡w,mean+273.15−140   [Pas] (3.3) 

 

The thermal conductivity of water at the mean temperature [7]: 
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𝑘 = −0.5752 + 6.397 ∙ 10−3(𝑡w,mean + 273.15) − 8.151 ∙ 10−6(𝑡w,mean + 273.15)2   [ WmK] (3.4) 

 

The specific heat capacity of water at the mean temperature [7]: 𝑐𝑝w = 28.07 − 0.2817(𝑡w,mean + 273.15) + 1.25 ∙ 10−3(𝑡w,mean + 273.15)2 − 2.48∙ 10−6(𝑡w,mean + 273.15)3 + 1.857 ∙ 10−9(𝑡w,mean + 273.15)4   [ kJkgK] (3.5) 

 

The mean velocity of water: 

𝑤 = 4�̇�w𝜌 ∙ (𝑑 ∙ 10−3 )2𝜋 [ms ] (3.6) 

 

The Reynolds number: 

Re = 𝑤 ∙ (𝑑 ∙ 10−3) ∙ 𝜌𝜇  (3.7) 

 

The Prandtl number: 

Pr = 𝑐𝑝𝑤 ∙ 103 ∙ 𝜇𝑘  (3.8) 

 

The Nusselt number valid for smooth tubes over a large Reynolds number range including 

the transition region [8]: 

Nu = (𝑓8) ∙ (Re − 1000)Pr
1 + 12.7 (𝑓8)12 (Pr23 − 1) (3.9) 

 

The correlation is valid for 0.5 < 𝑃𝑟 <  2000 𝑎𝑛𝑑 3000 < 𝑅𝑒 <  5 ∙ 106. 

The friction factor f (the Darcy friction factor) is determined from Petukhov’s formula:  

𝑓 = 1[0.79 ∙ ln(Re) − 1.64]2 (3.10) 

 

The heat transfer coefficient at the contact surface between water and pipe:  
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ℎin = Nu ∙ 𝑘𝑑 ∙ 103  [ Wm2K] (3.11) 

 

The heat transfer coefficient at the contact surface between air and pipework can be 

assumed: 

ℎout = 10 [ Wm2K] (3.12) 

 

The overall heat transfer coefficient: 

𝑈 = 11𝑑 ∙ 10−3𝜋ℎin + 12𝜋𝑘ins 𝑙𝑛 𝑑 + 2𝛿𝑑 + 1(𝑑 + 2𝛿)10−3𝜋ℎout  [ WmK] 
(3.13) 

 

Heat losses/gains per unit length of pipe: 

�̇�l = 𝑈 ∙ |𝑡w,mean − 𝑡env|  [Wm] (3.14) 

 

Total heat losses/gains of the pipe: �̇� = 𝑈 ∙ |𝑡w,mean − 𝑡env| ∙ 𝐿  [W] (3.15) 

 

The estimated water temperature at the end of the pipe: 

𝑡w,out = 𝑡w,in ± �̇��̇�w𝑐𝑝  [°C] (3.16) 

 

sign “+” is used when the environment (air) temperature is higher than the inlet water 

temperature while the sign “– “ is used when the environment (air) temperature is lower 

than the inlet water temperature. 

The obtained (new) water temperature at the outlet will be used for next iteration process 

in which the mean water temperature is: 

𝑡w,mean = 𝑡w,in + 𝑡w,out,LAST2  [°C] (3.17) 

 

The convergence criteria uses the temperature difference of the 𝑡w,out from last iteration 

step and 𝑡w,out from previous iteration step and if this temperature difference is smaller 

than the requested error the iteration procedure will be stopped. 
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3.2 Results of the introduced iterative procedure 

 

Figure 3.2: Convergence graph 

 

Figure 3.3: Temperature change of the working fluid (with insulation) graph 
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Figure 3.4: Heat losses/gains per m of pipe with insulation 

 

Figure 3.5: Temperature change of the working fluid (without insulation) graph 
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Figure 3.6: Heat losses/gains per m of pipe without insulation 

 

3.3 Practical approach for heat losses/gains of the pipework model 

Heat losses/gains of the pipework can be estimated/adopted as suggested by BSRIA Limited 

and The Chartered Institution of Building Services Engineers (CIBSE) in A guide to HVAC 

Building Services Calculations Second edition [9]. 

Rule of the thumb for design data is: 

Water flow temperature – heating mode: 

 LTHW: 70-95 °C 

 MTHW: 100-120 °C 

 HTHW: over 120 °C 

Estimate the heat loss for each section (often taken as a percentage of unit load such as 5-10 

%, or as a typical value such as 25 W/m run for insulated  heating pipes, 100 W/m run for un-

insulated pipes) to give the total load for each section. The heat loss will depend on pipe 

orientation (vertical/horizontal) and the quality and installation of insulation. Heat losses can 

be less than 5% if the pipes are well insulated. 

More precise dependence of temperature change is given in Figure 3.7 for the case of 

uninsulated pipe. 
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Figure 3.7: Heat losses from uninsulated horizontal pipe depending on the temperature difference of fluid and 

ambient temperature  

For the verification of the measurements, the theoretical model described in 3.1 will be 

used, which will be compared to the results of the measurements on the real objects.  
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3.4 Algorithm for heat losses/gains of the pipework model 

Algorithm for heat losses/gains of the pipework was developed based on the model 

described in 3.1. 

 

Figure 3.8: Algorithm for heat losses/gains of the pipework model 

3.5 Approximate function for temperature change evaluation  

With iterative model as a starting point, the simplification has been made in order to make 

the import of the model with other models easier.  
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Figure 3.9: Diagram of temperature change with the variation of mass flow rate per unit pipe length  

 

 

Figure 3.10: Diagram of temperature change with the variation of water inlet temperature per unit pipe length  

The fluid temperature change along the section „i“ of the length il : 

s,i 2 4 in

i 1 i 1 w

s,

s,i 2

i

i

s,i
( ( ) ) (0.0251 2 10 0.062803

3.6 3.6 3.6

0.0398896 ( ) )
3.6

Q
T a b c l

Q Q
T

Q
l

           

  

 (3.18) 

 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

0,002

0,004

0,006

0,008

0,010

0,012

0,014

0,016

0,018

0,020

0,022

Te
m

pe
ra

tu
re

 d
ro

p 
[°

C]

Mass flow rate [kg/s]

 Temperature



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 Annex 1 – Central HVAC system prediction and estimation   

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  
 

where 1 is the tuning factor, 
s,iQ is fluid mass flow [m3/h], and il represents the section “i” 

length expressed in meters. The initial value of the factor 1  is 1 1  . 

This model refers to an insulated pipe with 10 mm insulation thickness. For uninsulated 

pipes, the factor 1 has higher values. 

3.6 Approximate function for heat gain/loss evaluation  

 

Figure 3.11: Diagram of heat losses with the variation of mass flow rate  

 

Figure 3.12: Diagram of heat losses with the variation of water inlet temperature  
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�̇�i = (0.4115𝑇win + 6.553)𝜉2𝑙i [W] (3.19) 

 

where 2 is a tuning factor, il represents the length of the section i expressed in meters. The 

initial value of the factor 2  is 2 1  . 

This model refers to an insulated pipe with the 10 mm insulation thickness. For uninsulated 

pipes, the factor 2 has higher values. 

Off-line operation of the module –heat losses/gains on supply line 

 compute parameters of the temperature drop/rise models from the central system 

to the entrance into each of the floor segments i which uses as inputs the medium 

flow at the output of the central system 𝑄s and the medium temperature at the 

output of the central system towards the building 𝑇s 

 for heat losses on the return line: compute parameters of the temperature model 

for temperature at the return of the central system 𝑇w,hpin  which uses as inputs the 

return flows 𝑄w,cal,i and return temperatures 𝑇w,cal,iout  coming from each of the floor 

segments denoted with i 

 for flow shares: compute ratio parameter 𝛼𝑖 = 𝑄w,cal,i𝑄s  for each of the floor 

segments i 

Inputs: 

Parameter Description Format 𝑇s[°C] Temperature of the medium 

coming out of the heat pump 

Historical sequence of data 

with time-stamps, minutely 

sampled 𝑇w,hpin [°C] Temperature of the medium 

coming into the heat pump 

Historical sequence of data 

with time-stamps, minutely 

sampled 𝑄s  [m3/h]  Medium flow through the 

heat pump 

Historical sequence of data 

with time-stamps, minutely 

sampled 𝑇w,cal,iin [°C] Measured temperature at 

the medium entrance into 

the floor segment i 

Historical sequence of data 

with time-stamps, minutely 

sampled 𝑇w,cal,iout [°C] Measured temperature at 

the medium exit from the 

floor segment i 

Historical sequence of data 

with time-stamps, minutely 

sampled 𝑄w,cal,i  [𝑚3/h]  Measured input/output flow 

for the floor segment i 

Historical sequence of data 

with time-stamps, minutely 

sampled 

Piping data   

Roughly estimated 

temperature of the space 

through which the pipes run 

Roughly estimated c through 

which the pipes run 
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Outputs: 

Parameter Description Format 

Parameters of the 

temperature drop/rise model 

on the supply line for each of 

the floor segments i (one 

model for each i) 

 

The parameters calculated 

based on equation 3.18 

 

Parameters of the 

temperature model for 

return temperature into the 

central system based on floor 

segments outgoing 

temperatures and flows 

 

The parameters calculated 

based on equation 3.18 

 

𝛼𝑖  Parameters for flow shares 

 

 

 

On-line operation of the module: Evaluate the estimated models in off-line operation such 

that their outputs are computed and that they can be checked with actual measurements. 

Estimated temperature drop based on  equation 3.18 as well as the parameters calculated in 

off-line operation regime.  
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4 Submodule for estimation of the energy consumption of the 

central hydraulic pump (HVAC.PE.3) 

Modulation of water flow rate is usually achieved by means of a two-port valve which 

throttles the water flow rate in response to a room temperature sensor. For radiators and 

radiant panels, thermostatic radiator valves (TRVs) are invariably used. These are low cost, 

self-actuating valves requiring no wiring: one TRV per emitter is used. For natural convectors 

a two-port valve connected to a room temperature sensor is common. Occasionally, three 

port valves are used to divert water away from a group of emitters, controlled from a room 

sensor. Regardless of how the flow modulation is achieved, the response of the emitter is 

the same. Figure 4.1 shows how heat output varies with water flow rate. The axes used 

represent fractional heat output and flow rate, i.e. the ratio of actual heat output (or flow 

rate) to the design value at full duty. The curve is based on a flow temperature of 80°C and a 

design return water temperature of 70°C. As can be seen, the response curve is highly non-

linear: a large reduction in water flow rate results in only a small reduction in heat output 

rate. The curve becomes more linear as the design flow and return temperature difference 

are increased. Such non-linearity requires a valve characteristic which will produce a large 

reduction in flow rate for a small valve stem movement. Such valves are available but are 

relatively expensive. They might be used for controlling a group of emitters but are not 

economically attractive propositions for individual emitters. Less expensive valves need to 

be virtually closed to give a significant reduction in heat output rate. Furthermore, as the 

two-port valve closes, the pressure drop across it increases and so the valve has to close 

further. This results in poor controllability and possibly a valve that is unable to shut off 

completely [9]. 

 

Figure 4.1: Variation of heat output rate with water flow rate. 

Flow temperature modulation is achieved by blending of return water with the flow using a 

three-port ‘mixing’ valve. The response of the heat emitter to a change in flow water 

temperature is shown in Figure 4.2. As can be seen, unlike the two-port throttling valve, the 

response is very nearly linear so good control is achieved. Unfortunately, such valves and 

control systems are relatively expensive. As such, this system is used for controlling large 

groups of emitters [9]. 
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Figure 4.2: Variation of heat output rate with water flow temperature. 

4.1 Theoretical background 

Development of the module for Variable Frequency Drive (VFD) control of the circulation 

pump was carried out in two parts. The first part deals with the impeller characteristic curve. 

This curve is plotted on the pump manufacturer’s performance specification for a given 

pump and it shows the relationship between the head (pressure loss) and capacity (flow 

rate) of a given pump/impeller combination.  In addition to capacity and head data, 

information for efficiency, brake horsepower, and net positive suction head (NPSH) required 

are also generally plotted on the performance curve. These hydraulic data all simultaneously 

displayed on the same coordinate plane can be used for HVAC system analysis. The second 

part deals with what is commonly referred to as the system curve. It depicts a system’s 

piping circuit resistance to flow at various flow rates.  This curve is not presented on the 

pump manufacturer’s performance curve because each piping system is unique and totally 

independent of the pump’s manufactured performance. In brief, the characteristic curve is 

equipment dependent while the system curve is equipment independent. For mathematical 

modelling all mentioned curves must be digitized and presented as mathematical 

expressions with certain limitations which should be also provided. 

 

Regarding the simplifications necessary for implementation of the developed module for 

VFD of the circulation pump presented in this report several assumptions were made: 

- System curve is assumed to be constant despite changes of pressure loss from 

friction in pipeline due to flow rate change; 

- HVAC system is assumed to be equipped with one circulation pump; 

- VFD control of the circulation pump is made according to differential pressure at the 

pump inlet and outlet; 

 

According to model description and presented assumptions for the particular case, overall 

methodology for HVAC.PE.3 submodule development is presented in Figure 4.3. 
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Figure 4.3: Submodule development methodology 

 

Circulation pump selection and performance curves  

 

First steps in the methodology to be presented consist in the adaptation of pump 

parameters due to heat demands for heating/cooling operation which should result in the 

appropriate pump model selection. Model selection diagrams provided by pump 

manufacturers will be used for obtaining the pump model. The performance curves obtained 

from the model will then be used for submodule development. Example for pump selection 

according to the adopted flow rate (up to 16 m
3
/h) and adopted head (up to 7 m) are 

presented in Figure 4.4. 

 
Figure 4.4: Example of pump model selection 
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Performance curves for the selected pump model were obtained also according to the 

provided manufactures data from pump specifications and characteristics. Performance 

curves consist of flow rate dependencies of head, brake horsepower, efficiency and NPSH, 

and for selected pump model in the previous example are presented in Figure 4.5. 

 

 
Figure 4.5: Performance curves for the selected pump model [9] 

 

Formation of mathematical expressions 

 

It has been shown that the typical pump performance curve takes the form of a parabolic-

type power function in the form,  
ny k x   , where n > 0 …..(4.1) 
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For all practical purposes, the head, brake horsepower, efficiency and capacity of a 

centrifugal pump can be considered to vary parabolically and usually can be represented by 

a quadratic expression in the standard form, 

 

                      𝑦 = 𝑎 ∙ 𝑥2 + 𝑏 ∙ 𝑥 + 𝑐 ……… . . (4.2)                              
 

Rewriting in the hydraulic form for all data presented on pump performance curves yields, 

 𝐻 = 𝑎1 ∙ 𝑄2 + 𝑏1 ∙ 𝑄 + 𝑐1                              𝑃el = 𝑎2 ∙ 𝑄2 + 𝑏2 ∙ 𝑄 + 𝑐2 ……… . (4.3) 

                                               𝜂 = 𝑎3 ∙ 𝑄2 + 𝑏3 ∙ 𝑄 + 𝑐3  

 

 

Coefficients a i , b i and c i (i = 1, 2, 3) in previous equations are calculated according to least 

squares data approximation which are obtained by digitizing performance curves of the 

selected pump. Examples of the digitizing and approximation procedure for determination 

of coefficients for Pel are presented in Figure 4.6. 

 

 
Figure 4.6: Examples of the digitizing and approximation procedure for determination of coefficients for Pel 

 

Results for determination of coefficients for all pump performance curves are presented in 

Figure 4.7. 
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Figure 4.7:  Results for determination of coefficients for all pump performance curves 

 

Results of mathematical expressions formation for the selected pump model obtained by 

performance curves presented in the previous example, which can be used in developing 

FRPC submodule are given as: 

             𝐻 = −0.0301 ∙ 𝑄2 + 0.2656 ∙ 𝑄 + 6.0051; (𝑅2 = 0.99894)                              
            𝑃el = −0.0010052 ∙ 𝑄2 + 0.026361 ∙ 𝑄 + 0.068473; (𝑅2 = 0.99583)……… . (4.4) 

             𝜂 = −1.0089 ∙ 𝑄2 + 19.946 ∙ 𝑄 − 29.5773; (𝑅2 = 0.99213) 

 

Where, H [m] is head or pump pressure loss, Pel [kW] pump brake horsepower, η [%] pump 

efficiency and Q [m
3
/h] pump capacity or flow rate. Limitations for presented mathematical 
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expressions are that it can be used only for pump flow rates from 0 up to 16 m
3
/h, due to 

selection limits of the pump model. Detailed VFD model description is presented in the 

following chapter.  

4.2 HVAC.PE.3 model and algorithm 

HVAC.PE.3 model for HVAC systems are defined according to algorithm presented in the 

Figure 4.8. Primary aims of the model are prediction and estimation of energy consumption 

of the hydraulic pump with VFD due to change of flows as an issue of different heat 

demands in the HVAC systems. Additionally, HVAC.PE.3 model should provide key 

parameters for controlling the circulation pump by central control unit. Also during the 

operational phase in order to obtain necessary data and input parameters for the model 

function, the calibration process should be performed.  

 

Figure 4.8: Algorithm for variable frequency drive for circulation pump 

HVAC.PE.3 model should be considered in order to comprehend HVAC systems with fan coils 

(FC) and with radiators/ground floor heating elements (RG). Also during calibration process 

START

eta = f(qs)

qs

Fan-coils

Radiators/

groundfloor heating

qs

qs,nom 

pnom

qs,nom 

pnom 

pend 

Pump 

selection

E = f(eta, qs) p = f(qs)

E = f(eta, qs)

qs,nom 

pnom 

pend 

END

Δp =pi – pi-1
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determination of the nominal pump flow ( ,s nomQ ) and nominal differential pressure on the 

inlet/outlet of the pump ( nomp ) is necessary with the HVAC systems with FC. For the HVAC 

systems with RG additionally should be carried out determination of ( endp ) differential 

pressure measured on the „last“ radiator/ground floor heating element in the RG system 

longest line. These parameters obtained during calibration process are used as constant in 

the model equations for prediction and estimation of the circulation pump energy 

consumption in the HVAC systems. But fine tuning of the model should be considered and 

adaption of the model parameters should be performed for each test site in particular. 

Detailed formulation of the HVAC.PE.3 model will be presented in the following chapter. 

4.3 HVAC.PE.3 Model 

Regarding to project description HVAC.PE.3 model should be considered in two cases: 

 CASE 1 - with fan coils (FC) as heating/cooling elements in the system 

 CASE 2 - with radiators or floor heating elements (RG) in the system 

4.3.1 Fan coils as heating/cooling elements in the system 

p, Pa

Qs, m
3
/hQs,nomQs,1

nnom

n1

A

B

pp,nom

pp,1

 

Figure 4.9: Pump diagram 

Point A represents a pump working point at nominal power with maximum flow through fan 

coils (FCs). Point B represents a pump operating point when changing the operational mode 

due to flow reduction through FC. 
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The following symbols are used:   

s,nomQ , m
3
/h  – volume  flow at nominal working regime 

nomH , m – head (pressure drop) at nominal working regime. 

nomn , rpm – pump rpm at nominal working regime. 

sQ  , m
3
/h – volume  flow required by FC 

 

Power of the pump at nominal working regime can be calculated as:  

s,nom nom

p,nom

uk

9.81Q H
P




  
 , kW ………………(4.5) 

3

kg
1000

m
   - water density (adopted value) 

According to affinity laws: 

s,nom s,1nom
1 nom

s,1 1 s,nom

Q Qn
n n

Q n Q
     ……….(4.6) 

3 3 33
p,nom nom nom s1

p p,nom p,nom3 3 3 3

p 1 nom nom s,nom

P n n Qn
P P P

P n n n Q


     


……………(4.7) 

Power in kW at flow  1 sQ q  for constant value of total efficiency.  

3

s
p p,nom 3

s,nom

Q
P P

Q
  ………………(4.8) 

Where is power for nominal pump regime given by: 

s,nom nom

p,nom

uk

9.81 Q H
P


 

 ……………..(4.9) 

Head at nominal working regime could be expressed as: 

p,nom

nom 5
10.2

10

p
H

SG
 


………………..(4.10) 

Total efficiency of the pump should be determined according to the digitizing procedure of 

performance curves for the specific pump and for this case (regarding to maximum flows 

and head) it can be adopted from (4.4) for flow range: 
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3

s

m
0 15

h
Q     

2

uk p s s1.0089 19.946 29.5773Q Q        …….(4.11) 

3

s

m
15 70

h
Q    2

uk p s s0.0592 5.2014 39.889Q Q         …….(4.12) 

Finally (4.9) with consideration of eqs. (4.10) and (4.12) given the nonlinear hydraulic pump 

model as: 

p,noms,nom
35
s

p 3

p s,nom

9.81 (10.2 )
3.6 10

pQ
QSGP

Q

  
  ……………..(4.13) 

Where following annotations are used:  

Qs , m
3
/h – pump flow 

Qs,nom , m
3
/h – nominal pump flow (when maximum flow throw fan-coils / all radiators are 

opened) 

pp,nom, Pa – nominal differential pressure measured on pump inlet/outlet  (when maximum 

flow throw fan-coils / all radiators are opened) 

SG = 1, - specific gravity of water 

p  – total pump efficiency obtained by fitting the curve ( ( )p sf Q  ) which is provided by 

the manufacturer of the pump. 

 

4.3.2 Radiators or floor heating elements in the system 

Regarding to literature review this case should have considered different hydraulic pump 

control modes in order to reduce energy consumption in the system. Due to proper 

selection of the hydraulic pump operational mode in the following chapters the behavior of 

uncontrolled and controlled pumps will be shown. 

The operation of uncontrolled pumps 

 

Figure 4.10: The operation of uncontrolled pumps scheme 

If the valve closes, the resistance increases and the volumetric flow decreases. Hence, the 

plant characteristic becomes steeper. Due to the higher resistance in the piping network the 
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pump needs to provide a higher pressure. 

With uncontrolled pumps the speed n remains constant and the operating point follows the 

pump characteristic to the left. 

The example shown below demonstrates the shifting of the operating point at part load 50 % 

and as a result, the related changes in the energy consumption of the pump. 

 

 

Figure 4.11: Operating point and power consumption at full and part load of uncontrolled pumps 

 

The operation of controlled pumps can be carried out with: 

1. Constant pump pressure  

 

Figure 4.12: Controlled pump with constant pump pressure scheme 

At part load the pressure across the pump is kept constant. This can be controlled either 

electronically in the pump itself or with a pressure dependent control and a variable speed 

drive at the pump. The operating point follows the line of constant pressure horizontally to 

the left. 

 

The example shown below demonstrates the shifting of the operating point at part load 50 % 
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and as a result, the altered energy consumption of the pump. 

 

 
Figure 4.13: Operating point and power consumption at full and part load of constant pressure controlled pumps 

 

2. Constant differential pressure across the end of the plant 

 

 

Figure 4.14: Controlled pump with constant differential pressure scheme 

 

The differential pressure Δp0 is held constant across the end of the plant. There are two 

possibilities to achieve this constant pressure at the end: 

 a measuring point at the end of the plant, connected to a pressure controller and a 

variable frequency drive (VFD) at the pump 

 an electronic control in the pump itself (“Δp variable” control) 

The operating point follows the control slope that runs towards Δp0 near V̇  = 0 m3/h 

The example shown below demonstrates the shifting of the operating point at part load 50% 

and as a result, the related changes in the energy consumption of the pump. 
 

 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 Annex 1 – Central HVAC system prediction and estimation   

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  
 

 
Figure 4.15: Operating point and power consumption at full and part load of constant differential pressure 

controlled pumps 

The plant characteristic is steeper at part load (50 %). Due to the reduced volumetric flow the 

resistance in the plant is reduced as well. The controlling across the end of a plant ensures 

that the necessary differential pressure there is still maintained. 

With a controlled pump with the measuring point at the end, the energy consumption of the 

pump is even further reduced [10]. 

 

Energy savings with controlled pumps 

 

For plants with variable volumetric flows, controlled pumps save energy very efficiently. The 

selection of the control system depends on the situation on site (distances, investments, etc.) 

As shown in the chart below, controlled pumps consume less power. Thus, energy and costs 

can be saved. A pump with constant differential pressure across the end of the plant is more 

efficient than a controlled pump with a constant pump pressure. 

The chart below shows the saving capacity on the basis of a data sheet of a pump. 
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Figure 4.16: Operating point and power consumption for controlled pumps 

Operating points and power consumption in comparison 

a:   operating point, design 

b:   operating point, part load, uncontrolled 

c:   operating point, part load, controlled Δppump  

d:   operating point, part load, controlled Δpend  

A:   power consumption, design 

B:   power consumption, part load, uncontrolled 

C:  power consumption, part load, controlled Δppump 

D:  power consumption, part load, controlled Δpend  

 

According to presented control modes HVAC.PE.3 model is defined for constant differential 

pressure across the end of the plant as follows: 
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H, m

Qs, m
3
/hQs,nom

nnomn1

A

B

n2

Qs,1Qs,2

H2

H1

HnomΔ1

Δ2

Hend

.

.

.

 

Figure 4.17: Pump diagram  

Point A represents a pump working point at nominal power with maximum flow through 

radiators/floor heating elements. Point B considers theoretical pump operating point when 

all radiators/floor heating elements are closed and the flow through the pump is equal 0. 

The operational modes of the pump due to flow reduction by exclusion of particular radiator 

or floor heating element from the system are presented by points between. 

Where following annotations are used:  

 s,nomQ  , [m
3
/h] – volume  flow at nominal working regime 

nomH , [m] – head (pressure drop) at nominal working regime. 

nomn , rpm – pump rpm at nominal working regime. 

1 2, ,...H H ,[m] – Head (or differential pressure) on the pump when particular radiator/floor 

heating elements is closed 

1 2, ,...s sQ Q , [m
3
/h] – reduced volume flow through the system caused with closing the 

radiators/heating elements 

endH ,[m] – Head (or differential pressure) by theoretical case when all radiators/floor 

heating elements are closed and volume flow through the pump is zero. It can be measured 

on the “last” radiator/floor heating element on the system and it is used for regulating the 

flow. 
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In order to define nonlinear VFD hydraulic pump model for this case the equation for the 

line through points A and B should be determined by 

s
end nom end

s,nom

( )
Q

H H H H
Q

     …..(4.14) 

 

Possible cases: 

1. All radiators are open: 

s s,nom nomQ Q H H    …..(4.15) 

 

2. Radiator no.1 is closed:  

s,1

s s,1 1 end nom end

s,nom

( )
Q

Q Q H H H H
Q

       …..(4.16) 

then 1 1nomH H    is pressure drop on Radiator no.1 

 

3. Radiators no.1 and no.2 are closed:  

s,2

s s,2 2 end nom end

s,nom

( )
Q

Q Q H H H H
Q

       …..(4.17) 

then 2 1 2H H    is pressure drop on Radiator no.2 

 

4. All radiators are closed (theoretical case):  

s end0Q H H   …..(4.18) 
 

According to equation 4.14 with consideration of equations 4.16, 4.17 and 4.18, VFD 

hydraulic pump model for case with radiators/floor heating elements can be given as 

p,noms end end s

5 5 5

s,nom

p

p

9.81 (10.2 (10.2 10.2 )
3.6 10 10 10

pQ p p Q

SG SG SG Q
P



       
  

 ….. (4.19) 

Where following annotations are used: 

sQ  , [m3/h] – pump flow 

s,nomQ , [m3/h] – nominal pump flow (when maximum flow throw fan-coils / all radiators are 

opened) 

p,nomp , [Pa] – nominal differential pressure measured on pump inlet/outlet (when maximum 

flow through fan-coils / all radiators are opened) 

endp , [Pa] – differential pressure at inlet/outlet measured on the „last“ radiator in the 

longest line - only for radiators/ground floor heating (when all radiators are opened) 

SG = 1, - specific gravity of water 

p   – total pump efficiency obtained by fitting the curve ( p s( )f Q  ) which is provided by 

the manufacturer of the pump. 
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4.3.3 Analysis of application on particular test-sites 

 

Application of the HVAC.PE.3 module as a part of the overall central HVAC module design on 

particular test-sites should consider the following: 

 For selected circulation pump from all test-sites should be provided pump 

characteristics efficiency vs flow ( p s( )f Q  );  

 output for the hydraulic pump submodule will be pump parameters for electricity 

consumption for different operating regimes and for different heating/cooling 

element configurations. 

 Additional demands for input variables which will be used in hydraulic pump 

submodule (i.e. parameters which should be measured on particular test-site 

parameters identification) are pump flow and differential pressure on the pump (

s,nomQ ; nomp ) at nominal regime. For radiators/ground floor heating systems, input 

variables are differential pressure on the last element or differential pressure on the 

pump when all the elements were closed ( end s( 0)p Q  ).  

 

4.3.4 HVAC.PE.3 model parameters 

 

Main purpose of the module HVAC.PE.3 – compute parameters of the electrical energy 

consumption model for the circulation pump, in two configurations: 

 Case a - static hydraulic situation with fan coils 

 Case b - configuration with radiators or floor heating/cooling 

 

Off-line module operation for Case a: (model of the energy consumption that is a function of 

Qs, identification performed e.g. once a month based on collected data) 

INPUT  FORMAT 

p s( )f Q   total pump efficiency 

obtained by fitting the curve 

which is provided by the 

pump manufacturer 

Pump data 

 p Pap   Measurement of pressure 

drop;  

Historical data, minutely 

sampled 

3

s m /hQ     Measurement of flow Historical data, minutely 

sampled 

 

OUTPUT  FORMAT 

  3

s s proportional to f Q Q   Parameters of the electrical 

energy consumption model 

for eq. 4.13 

The procedure for 

parameters identification is 

implemented in Python 
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On-line operation for Case a consider: 

OUTPUT  FORMAT 

 p sP f Q    Energy consumption for the 

pump based on currently 

sampled data of flow 
sQ  eq. 

4.13 

The procedure for on-line 

evaluation is implemented in 

Python 

 

Off-line module operation for Case b: (model of the energy consumption that is a function of 

s,nom s end, ,Q Q p  , performed e.g. once a month based on collected data) 

INPUT  FORMAT 

p s( )f Q   total pump efficiency 

obtained by fitting the curve 

which is provided by the 

pump manufacturer 

Pump data 

 p Pap   Measurement of pressure 

drop;  

Historical data, minutely 

sampled 

3

s m /hQ     Measurement of flow Historical data, minutely 

sampled 

 

OUTPUT  FORMAT 

 s,nom s end, ,f Q Q p   Parameters of the electrical 

energy consumption model 

for eq. 4.19 

The procedure for 

parameters identification is 

implemented in Python 

 

On-line operation for Case b consider: 

OUTPUT  FORMAT 

 p sP f Q   and set 

s,nom end,Q p  

Energy consumption for the 

pump based on currently 

sampled data of flow 
sQ  eq. 

4.19 

The procedure for on-line 

evaluation is implemented in 

Python 
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5 Non-controllable consumption prediction submodule 

(HVAC.PE.4) 

Submodule for prediction of the total non-controllable energy consumption on the central 

HVAC unit. 

5.1 Submodule inputs 

Table 5.1: Required inputs for non-controllable consumption prediction submodule. 

Variable name Variable annotation Variable description 

Historical profile of the 

non-controllable energy 

consumption on the central 

HVAC unit 

𝐸t,nc 

Non-controllable thermal 

energy consumption on the 

HVAC level 

Weather measurements 

UNIZG-FER pilot site: 𝑇env, 𝐼𝑑𝑖𝑓𝑓ℎ , 𝐼𝑑𝑖𝑟n  

Remaining pilot sites: 𝑇env, 𝐼gloℎ , 𝐼glot  

Measured weather 

variables:  

temperature, diffuse 

horizontal and direct 

normal irradiance (UNIZG-

FER site),  

global horizontal and tilted 

global irradiance 

(remaining sites). 

Weather predictions (𝑇env)N, (𝐼dirn )N, (𝐼diffh )N 

Forecasted weather 

variables (temperature, 

direct normal and diffuse 

horizontal irradiance). 

Time indicators 𝜏 

Variables representing time 

of the day, time of the 

week and day of the year. 

Calculated from current 

and historical datetimes. 

 

5.1.1 Non-controllable thermal energy consumption 

Non-controllable thermal energy consumption on the HVAC level represents the HVAC level 

thermal energy consumption that is not controlled by zones or HVAC MPC modules. It is 

measured/calculated differently on each considered pilot site depending on the 

configuration of the pilot site HVAC level and available measurement equipment present on 

the site. Since very often different systems are utilized during heating and cooling operation 

regimes, the non-controllable consumption is measured/calculated differently depending on 

the current operation regime. Determination of the non-controllable thermal energy 

consumption for different pilot sites is presented in the following Table 5.2. 
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Table 5.2 Non-controllable thermal energy consumption determination. 

Pilot site Heating regime Cooling regime 

UNIZG-FER 

Consumed thermal energy on 

the heating substation primary 

side meter (billing meter)  

- 

consumed thermal energy on 

all fan coils  

Consumed thermal energy on 

the calorimeter for cold 

medium supply towards B 

buildings climatization 

HEP 

Consumed heat on the billing 

meter 

- 

calculated consumption on all 

controllable zone elements 

- 

calculated heat loss on the 

horizontal ducts 

- 

calculated heat loss on the 

supply and return vertical 

Cooling energy produced by 

the water chiller 

- 

data from the main 

calorimeter entering the pilot 

building 

Idrija (school building) 

Consumed heat on the billing 

meter  

- 

 calculated consumption on all 

controllable zone elements  

- 

calculated heat loss on the 

supply and return verticals 

 

Idrija (sports centre 

building) 

Consumed heat on the billing 

meter  

- 

calculated consumption on all 

controllable zone elements  

- 

 calculated heat loss on the 

supply and return verticals 

 

EON 

Consumed heat on the central 

calorimeter 

- 

(consumed heat in zones with 

fan coils measurements 

+  

calculated energy loss on the 

vertical supply lines) 

 

Consumed heat on the central 

calorimeter 

- 

(consumed heat in zones with 

fan coils measurements 

+ 

calculated energy loss on the 

vertical supply lines) 

STREM (school building) 
Consumed heat on the non-

controllable thermal circuit 

calorimeter 

Consumed heat on the non-

controllable thermal circuit 

calorimeter 

STREM (retirement care 

centre) 

Output of the cooling machine 

- 

calorimeter measurement from 

the controlled supply line 

Consumed heat on the central 

calorimeter 

- 

calorimeter measurement 

from the controlled supply 

line 
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EPHZHB 
Measured heating energy at 

two separate AHU units 

Measured cooling energy at 

two separate AHU units 

 

5.1.2 Solar irradiance data 

Depending on the availability of solar irradiance measurements on different pilot sites 

throughout the project, two separate sets of weather measurements inputs are used. 

 On the UNIZG-FER pilot site, where direct normal and diffuse horizontal irradiance 

measurements are available, they are used as submodule inputs and paired with the same 

forecasted variables during submodule operation.  

Due to high costs of direct and diffuse irradiance sensors other pilot sites provide 

measurements of global horizontal and tilted global irradiations which are then used as 

submodule inputs. Since measured and forecasted irradiances are now different, during 

submodule operation,  forecasted direct and diffuse irradiance, solar angles (obtained 

through the use of Pysolar python library), geographical pilot site data and current datetime, 

are used for calculation of global horizontal and tilted global irradiances thus matching the 

measured and forecasted irradiance variables. 

5.2 Submodule outputs 

Table 5.3: Outputs of the non-controllable consumption prediction submodule. 

Variable name Variable annotation Variable description 

Prediction model 

parameters (for off-line 

operation of the submodule) 

𝜃t,nc 
Needed for on-line 

operation of the submodule. 

Predicted non-controllable 

heating/cooling energy 

consumption evolution (for 

on-line operation of the 

submodule) 

(𝐸t,nc)N 
Needed for the MPC module 

on the central HVAC level 

 

Since the non-controllable consumption model is based on artificial neural networks (as 

presented in the following section 5.3) the predictions sometimes tend to reach impossible 

values, e.g. negative thermal energy values during heating period when the module output 

is actually fluctuating around 0. The structure of neural networks prohibits the model to 

incorporate exact boundaries on the model outputs, therefor all generated predictions are 

post-processed in order to avoid such unexpected values. E.g. during heating season, the 

non-controllable energy on the UNIZG-FER pilot represents the thermal energy consumption 

of the radiators and therefor cannot be negative. Therefore all the generated negative 

prediction values are set to 0.  

5.3 Methodology 
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Based on a detailed description of artificial neural networks (ANN) given in [12], in the 

following sections a condensed description of ANNs structures and learning algorithms is 

given, together with a description of prediction module structure and operation schemes. 

5.3.1. Artificial neural networks 

Understanding of the human brain functioning and its learning and adaptation abilities made 

researchers try imitating its structure in order to imitate its capabilities in the computer 

systems. The basic element of the brain is a neural cell or neuron. Human brain contains 10
11

 

neurons interconnected in the network with more than 10
15

 links. Although the neuron 

structure is rather simple, because of the immense number of links among them, a brain can 

perform the most complex operations. Schematic representation of a biological neuron is 

shown in Figure 5.1. 

Neuron is composed of the cell body (soma), axon and a number of dendrites. Front end of 

an axon is connected to the cell body and its back end is split in a large number of branches. 

These branches are terminated by telodendria with their terminal buttons that touch 

dendrites of the other neurons. The terminal buttons contain numerous small bags with 

transmitters. A small distance between a telodendron of one neuron and a dendrite of 

another is called a synapse. Axon of one neuron forms synaptic interactions with many other 

neurons. Impulses generated in the cell body travel through an axon to a synapse. 

Depending on the efficiency of each synaptic transfer, action potentials of different intensity 

come over dendrites to the cell body where they are then collected and processed. If their 

cumulative value is greater than the neuron sensitivity threshold, a cell body generates an 

action potential which is spread over the axon to the other neurons, and if it is lower, the 

neuron remains inactive and does not generate an action potential. From the signal 

processing perspective, neuron operation can be divided in synaptic operation which gives a 

certain relevance (weight) to each input signal and somatic operation which collects all the 

"weighted" input signals, and due to their cumulative values, generates or does not generate 

a signal which is transferred towards other neurons. 

Axon

Myelin sheath

Nucleus

Soma (cell body)

Dendrite
Telodendron

Synapse
Telodendron of 

the other neuron

 

Figure 5.1: Schematic representation of a biological neuron.  

5.3.1.1. Artificial neuron model 
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Early research in the field of artificial neurons was published by McCulloh and Pitts in 1943 

and 1947 [13], [14]. Their model was based on a simple implementation of synaptic and 

somatic operations and was called a perceptron. Schematic representation of a perceptron 

is shown in Figure 5.2. 

1

sensitivity 

threshold

nonlinear 

activation 

function

to other 

neurons

Somatic 

operation

w1

w2

wn

Synaptic 

operation

Neuron 

output (axon)

x1(t)

x2(t)

xn(t)

Input 

signals

Synapses

v(t) y(t)

Dendrites

signal 

collecting

Ψ 

 

Figure 5.2: Schematic representation of a perceptron. 

Synaptic operation is performed by multiplying input signals 𝑥𝑖  with their weight coefficients 𝑤𝑖. Sum of all weighted signals is compared to a neuron sensitivity threshold 𝑤𝑛+1. If this 

sum is greater than a sensitivity threshold, nonlinear activation function 𝜓 generates an 

output signal 𝑦 equal to 1, and if it is less, neuron output is zero. 

Mathematically, a perceptron can be described using these relations: 

𝑣(𝑡) = ∑𝑤𝑖(𝑡)𝑛
𝑡=1 𝑥𝑖(𝑡) − 𝑤𝑛+1, 
𝑦(𝑡) = ψ(𝑣),     

where: 𝒙𝒖 = [𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)]𝑇 is a vector of neuron input signals; 𝒘𝒔 = [𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)]𝑇 is a vector of neuron input signals; 𝒘𝒏+𝟏  is a neuron sensitivity threshold; 𝒗(𝒕)  is a similarity measure between input signals and synaptic weight 

coefficients (result of the confluence operation); 𝛙(𝒕) is a nonlinear activation function; 𝒚(𝒕) is a neuron output. 

However, because of the too simple model of a neuron, especially because of the 

discontinuity in nonlinear activation function, perceptron is not able to solve some simple 

operations. These constraints of the perceptron can be overcome by applying a continuous 
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differentiable activation function. Sigmoid functions are commonly used as activation 

functions because it was proved that the ANNs composed of at least three layers of neurons 

with sigmoid functions can represent any continuous function. One of the most commonly 

used activation functions is tansig defined by the following expression: 

ψ(𝑣) = 21 + 𝑒−2𝑔0𝑣 − 1, 
 

where 𝑔𝑜 is an activation gain and it is usually set to 1. Because of an extension of the initial 

model, in literature neurons with sigmoid activation functions are also referred to as 

perceptrons. 

Neuron models can be divided in two groups: static and dynamic models. Static neuron 

models, as opposed to dynamic ones, do not contain dynamic elements and their output 

depends exclusively on current values of input signals and weight coefficients. In this 

deliverable only ANNs with static neuron models are analyzed. 

5.3.1.2. Multilayer perceptron 

Static neural networks are most commonly used ANNs, especially in identification and 

control applications. A basic element of the static ANN is a static neuron. In static ANNs 

neurons are organized in a feedforward way, i.e.: each neuron can be connected to the 

network inputs and/or to other neurons, but in the way that no feedback connections are 

formed. Therefore, static ANNs do not contain any dynamic elements and that makes them 

statically stable which is their most important advantage in relation to dynamic ANNs. 

However, in order to model a dynamic system, delayed input and output signals have to be 

explicitly included in the vector of input signals of the static ANN. The most commonly used 

static ANNs are multilayer perceptrons (MLP) whose structure is presented in Figure 5.3. 

MLPs consist of perceptrons organized in serially connected layers. Layers are often labelled 

with numbers 0, 1, 2,⋯ , 𝐿, while for the number of nodes in the 𝑙-th layer we use label 𝑛(𝑙). 

The zeroth layer only transfers the input vector to an input of the first layer, 𝐿-th layer is an 

output layer, while layers between them are called hidden layers. Every neuron in a hidden 

layer is connected to all the neurons in two neighboring layers with unidirectional 

feedforward connections. Connections between neurons of the neighboring layers are 

represented by synaptic weight coefficients which act as signal gains on the corresponding 

connections. Values of the synaptic weight coefficients determine the network behavior, i.e.: 

its ability of approximating a nonlinear function. 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 Annex 1 – Central HVAC system prediction and estimation   

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  
 

Ψ1,2

Ψ1,1

Ψ1,n(1)

x1

x2

xn(x)

1 = x1,n(0)+1

y0,2 = x1,2

y0,1 = x1,1

y0,n(0) = x1,n(0)

w1,1,1

w1,2,1w1,n(1),1

w1,n(1),n(0)+1

w1,1,n(0)+1

v1,n(1)

v1,2

v1,1 y1,1 = x2,1

y1,2 = x2,2

y1,n(1) = x2,n(1)

ΨL,n(L)

ΨL,2

ΨL,1

1 = xL,n(L-1)+1

yL-1,2 = xL,2

yL-1,1 = xL,1

yL-1,n(L-1) = xL,n(L-1)

wL,1,1

wL,n(L),n(L-1)+1

vL,n(L)

vL,2

vL,1 yL,1

yL,2

yL,n(L)

1 = x2,n(1)+1
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L10

x y0 x1 W1 v1 y1 x2 yL-1 xL WL vL yL

 

Figure 5.3: Schematic representation of a multilayer perceptron. 

Mathematically, MLPs can be described by the following relations: 𝑦0 = 𝑥,  𝑥𝑙 = [𝑦𝑙−1𝑇 , 1]𝑇 ,       1 ≤ 𝑙 ≤ 𝐿,  𝑣𝑙 = 𝑊𝑙 ∙ 𝑥𝑙 ,         1 ≤ 𝑙 ≤ 𝐿,  𝑦𝑙 = ψ(𝑣𝑙),         1 ≤ 𝑙 ≤ 𝐿,  

where: 𝒙 = [𝑥1, 𝑥2,⋯ , 𝑥𝑛(𝑥)]𝑇 is a vector of the network input od dimension 𝑛(𝑥); 𝒚𝟎 = [𝑦0,1, 𝑦0,2,⋯ , 𝑦0,𝑛(0)]𝑇  is an output vector of the 0 -th layer of 

dimension 𝑛(0); 𝒙𝒍 = [𝑥𝑙,1, 𝑥𝑙,2,⋯ , 𝑥𝑙,𝑛(𝑙−1), 𝑥𝑙,𝑛(𝑙−1)+1]𝑇  is an input vector to the 𝑙-th layer 

(input 𝑥𝑙,𝑛(𝑙−1)+1 = 1 multiplied by corresponding weight coefficient gives a 

scalar bias to neurons of the 𝑙-th layer); 𝒗𝒍 = [𝑣𝑙,1, 𝑣𝑙,2,⋯ , 𝑣𝑙,𝑛(𝑙)]𝑇 is an output vector of the confluence operation 

of the 𝑙-th layer; 𝒚𝒍 = [𝑦𝑙,1, 𝑦𝑙,2,⋯ , 𝑦𝑙,𝑛(𝑙)]𝑇 is an output vector of the 𝑙-th layer; 

𝑾𝒍 = [  
  𝒘𝒍,𝟏,𝟏 ⋯ 𝒘𝒍,𝟏,𝒋⋮ ⋮ ⋮𝒘𝒍,𝒊,𝟏 ⋯ 𝒘𝒍,𝒊,𝒋

⋯ 𝒘𝒍,𝟏,𝒏(𝒍−𝟏)      𝒘𝒍,𝟏,𝒏(𝒍−𝟏)+𝟏⋮ ⋮ ⋮⋯     𝒘𝒍,𝒊,𝒏(𝒍−𝟏)        𝒘𝒍,𝒊,𝒏(𝒍−𝟏)+𝟏⋮ ⋮ ⋮𝒘𝒍,𝒏(𝒍),𝟏 ⋯ 𝒘𝒍,𝒏(𝒍),𝒋 ⋮ ⋮ ⋮⋯ 𝒘𝒍,𝒏(𝒍),𝒏(𝒍−𝟏)  𝒘𝒍,𝒏(𝒍),𝒏(𝒍−𝟏)+𝟏]  
  

 is a 

weight coefficient matrix of the synaptic connections of the 𝑙-th layer, 

dimension of which is 𝑛(𝑙) × (𝑛(𝑙 − 1) + 1); 𝜳𝒍(𝒗𝒍) = [𝛹𝑙,1(𝑣𝑙,1),𝛹𝑙,2(𝑣𝑙,2),⋯ ,𝛹𝑙,𝑛(𝑙)(𝑣𝑙,𝑛(𝑙))]𝑇is an activation function 

vector of the 𝑙-th layer (usually 𝛹𝑙,1 = 𝛹𝑙,2 = ⋯𝛹𝑙,𝑛(𝑙)). 
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The most commonly used activation function in the hidden layer is tansig, while in the 

output layer linear activation function is used. The activation gain is usually set to one.  

The most important properties of the ANNs are universal approximation, learning and 

adaptation. ANN property of approximating any continuous function to an arbitrary accuracy 

is its most important property from the perspective of modelling, identification and control 

of nonlinear processes. Learning and adaptation properties enable that an adequately 

calibrated ANN has the generalization ability when the data that was not present in the 

calibrating data set comes to its input. 

5.3.1.3. Neural network learning algorithms 

Learning algorithm tunes network parameters in order to achieve its desired behavior. In 

identification and control of nonlinear dynamic systems desired behavior of a neural 

network is usually known, so error-based algorithms are used for the learning/calibrating 

procedure. Schematic representation of the error-based algorithm for neural network 

learning is shown in Figure 5.4. 

LEARNING 

ALGORITHM

NEURAL 

NETWORK

x(t)

Δw(t)

tuning of the weight 

coefficients desired 

network output

error 

signal

input 

data network 

output

yn(t)
yd(t)

e(t)

-

 

Figure 5.4: Schematic representation of the error-based algorithm for neural network learning. 

Resulting neural network response 𝑦𝑛  to the input data is compared to the external 

reference signal 𝑦𝑑, which represents desired network behaviour, generating error signal 𝑒 

based on which the learning algorithm changes synaptic weight coefficients of the network 

in order to improve its behaviour, i.e.: to decrease the error. As an error measure a criterion 

function ℑ(Θ) is used and it can be any positive scalar function dependent on ANN 

parameters 𝚯. The most commonly used criterion function is defined as: 

ℑ(𝜣) = 12 ∑ 𝑒(𝑣,𝜣) ∙ 𝑒𝑇(𝑣,𝜣) = 12 ∑ ∑ 𝑒𝑖2(𝑣,𝜣)𝑛(𝐿)
𝑖=1 = 12𝑒∗𝑇(𝜣) ∙ 𝑒∗(𝜣)𝑁

𝑣=1
𝑁

𝑣=1 , 
where ν is a number of the measured sample, 𝑁 is an overall number of measured samples, 𝑒∗(Θ) is the error vector of the whole measured data set, which is of dimension 𝑁𝑒 = 𝑁 ⋅𝑛(𝐿). 
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There are two basic approaches in minimizing the criterion function ℑ(Θ): non-recursive and 

recursive. According to the non-recursive approach, function ℑ(Θ)is minimized such that 

network parameter changes are determined based on the complete set of 𝑁 measured 

samples. According to the recursive approach, function ℑ(Θ) is minimized based on a local 

criterion function ℑν(Θ), i.e. network parameters are changed after each measured sample. 

Learning algorithm tunes network parameters until the criterion function reaches its 

minimum. Minimum of the criterion function ℑ(Θ) can be formally defined by its Taylor 

series expansion in vicinity of the parameter vector Θ0 for which the minimum is obtained, 

and by ignoring its third and higher order terms: 

ℑ(𝜣) ≅ ℑ(𝜣𝟎) = ∇ℑ𝑇(𝜣)|𝜣=𝜣𝟎 ∙ ∆𝜣 + 𝟏𝟐∆𝜣𝑻 ∙ 𝑯(𝜣)|𝜣=𝜣𝟎 ∙ ∆𝜣,  

where:  ∆𝜣 = 𝜣 − 𝜣𝟎; ∇ℑ(𝜣) is a gradient vector of the criterion function: 

∇ℑ(𝜣) = [𝜕ℑ(𝜣)𝜕𝜃𝟏 , 𝜕ℑ(𝜣)𝜕𝜃𝟐 , ⋯ , 𝜕ℑ(𝜣)𝜕𝜃𝒏(𝜃) ] ;  

  𝑯(𝜣) = ∇2ℑ(𝜣)  is a Hessian matrix of the criterion function: 

𝑯(𝜣) =
[  
   
   𝜕2ℑ(𝜣)𝜕𝜃12 𝜕2ℑ(𝜣)𝜕𝜃𝟏𝜕𝜃𝟐 ⋯ 𝜕2ℑ(𝜣)𝜕𝜃𝟏𝜕𝜃𝒏(𝜃)𝜕2ℑ(𝜣)𝜕𝜃𝟐𝜕𝜃𝟏 𝜕2ℑ(𝜣)𝜕𝜃22 ⋯ 𝜕2ℑ(𝜣)𝜕𝜃𝟐𝜕𝜃𝒏(𝜃)⋮             ⋮        ⋱          ⋮𝜕2ℑ(𝜣)𝜕𝜃𝒏(𝜃)𝜕𝜃𝟏 𝜕2ℑ(𝜣)𝜕𝜃𝒏(𝜃)𝜕𝜃𝟐 ⋯ 𝜕2ℑ(𝜣)𝜕𝜃𝒏(𝜃)2 ]  

   
    .  

 

For the previously defined criterion, gradient vector and Hessian matrix become: ∇ℑ(𝜣) = 𝑱𝑇(𝜣) ∙ 𝑒∗(𝜣),  𝑯(𝜣) = 𝛻2ℑ(𝜣) = 𝑱𝑇(𝜣) ∙ 𝑱(𝜣) + ∑ 𝑒𝑖∗(𝜣)𝛻2𝑒𝑖∗(𝜣)𝑵𝒆
𝒊=𝟏 ,  

where 𝑱(𝜣) is a Jacobian matrix: 

𝑱(𝜣) =
[  
   
  𝜕𝑒1∗(𝜣)𝜕𝜃𝟏 𝜕𝑒1∗(𝜣)𝜕𝜃𝟐 ⋯ 𝜕𝑒1∗(𝜣)𝜕𝜃𝒏(𝜃)𝜕𝑒2∗(𝜣)𝜕𝜃𝟏 𝜕𝑒2∗(𝜣)𝜕𝜃𝟐 ⋯ 𝜕𝑒2∗(𝜣)𝜕𝜃𝒏(𝜃)⋮             ⋮         ⋱        ⋮𝜕𝑒𝑁𝑒∗ (𝜣)𝜕𝜃𝟏 𝜕𝑒𝑁𝑒∗ (𝜣)𝜕𝜃𝟐 ⋯ 𝜕𝑒𝑁𝑒∗ (𝜣)𝜕𝜃𝒏(𝜃) ]  

   
   .  
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Parameter vector Θ = Θ∗  will be the minimum argument of the function ℑ(Θ)  if the 

following conditions are fulfilled: ∇ℑ(Θ∗) = 0,  ΔΘT ⋅ H(Θ∗) ⋅ ΔΘ > 0.  

 

Therefore, tuning of the ANN parameters Θ is in fact a nonlinear optimization problem 

where the criterion function ℑ(Θ) is the objective function of the optimisation problem. 

Gradient methods are most commonly used nonlinear optimization techniques. The main 

problem in applying gradient methods in ANN learning procedure is calculating a gradient 

vector of the criterion function over the network parameters. This problem has slowed 

research and application of ANNs for a while, but was successfully solved using the 

backpropagation algorithm. More details can be found in [12]. 

Tuning of the ANN parameter vector Θ is based on an iterative procedure: 𝛩(𝑘 + 1) = 𝛩(𝑘) + 𝛥𝛩(𝑘) = 𝛩(𝑘) + 𝛼(𝑘)𝑠𝑑(𝑘),  

where: 𝑠𝑑(𝑘) is the minimum searching direction in the 𝑘-th iteration of the optimisation 

procedure (it is based on an information on a function ℑ(Θ)); 𝛼(𝑘) is the learning coefficient in the 𝑘-th iteration of the optimisation procedure (it 

determines the step size in the searching direction). 

Depending on the procedure of determining the minimum searching direction 𝑠𝑑(𝑘), 

gradient methods can be divided into four groups: 

 Steepest descent methods: 𝑠𝑑(𝑘) ∶= −∇ℑ(Θ(𝑘)); 
 Conjugate gradient methods: 𝑠𝑑(𝑘) ∶= −∇ℑ(Θ(𝑘)) + β(𝑘) ⋅ 𝑠𝑑(𝑘 − 1), where β(𝑘) 

is a scalar parameter which ensures conjugacy; 

 Newton methods: 𝑠𝑑(𝑘) ∶= −[∇2ℑ(Θ(𝑘))]−1∇ℑ(Θ(𝑘)); 

 Quasi-Newton methods [15], [16]: 𝑠𝑑(𝑘) ∶= −𝑆(𝑘)∇ℑ(Θ(𝑘))  where 𝑆(𝑘) ≅[∇2ℑ(Θ(𝑘))]−1
. 

ANN learning algorithms are named based on the corresponding nonlinear optimization 

methods which are used: steepest descent algorithms, conjugate gradient algorithms etc. 

5.3.2 Applying neural networks to system modelling 

In the last 20 years neural network applications for predicting variables in ecological and 

technical systems have become a well-known procedure in a research community [17]. In 

the early phases of their applications, ANNs were considered as a novel approach in system 

modelling and the majority of published papers in that period were related to applying ANNs 

in different systems and exploring their advantages in relation to the well-known statistic 

approaches [18]. Many review papers in this research area did not only affirm a potential of 
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using the ANNs in prediction systems, but they also noted an importance of developing a 

standard methodology in the model development procedure using ANNs. Clearly defined 

methodology is an important procedure for all modelling methods, but especially in ANN 

modelling because models are developed based on the available data and they are not 

explicitly based on the physical system that is modelled, therefore, a possibility of 

developing a model which is not very meaningful is increased. 

Main steps in developing the prediction model using ANNs are shown in Figure 5.5. Flow of 

data and outcomes for each step are also shown. First step in model development process is 

a choice of appropriate model outputs (variables which are going to be predicted) and 

potential inputs. A choice of potential inputs is based on a priori knowledge on the modelled 

process and on data availability. Selected data have to be processed (scaled, filtered, lagged) 

for being in an appropriate form for the next model development steps. 

A general ANN prediction model can be expressed in the following form: Y = f(X,W) + e,  

  

where 𝑌 is a model output vector, 𝑋 is a model input vector, 𝑊 is a model parameter vector 

(weight coefficients), 𝑓 is a function which defines input-output relationship and 𝑒 is a model 

error vector. Therefore, in model development process we need to define model inputs 𝑋, a 

functional relationship 𝑓 defined by the ANN structure and ANN parameter vector 𝑊. Model 

inputs are determined using the so called Input Variable Selection (IVS) procedures which 

are described in subsection 5.3.3. Result of this step are model development data which are 

then divided in calibration and validation data sets. Calibration data are used in ANN 

learning algorithms for determining the optimal model parameters, while validation data are 

used for validating the calibrated model on the independent data set. If implicit 

regularization is used as a stopping criterion of the learning algorithm, calibration data are 

divided in training and testing data sets. 

The main objective of the ANN learning process is to find the global minimum of the 

criterion function ℑ(Θ). However, in modelling of dynamic systems which inherently contain 

noise, the global minimum of the criterion function is not the optimal solution because the 

obtained model does not assure the best generalization properties. In the first phase of the 

ANN learning process a decrease of the criterion function ℑ(Θ) on the training data leads to 

a decrease of the criterion function ℑ𝔱(Θ) on the testing data. However, after certain 

number of iterations, value of the criterion function ℑ𝔱(Θ) starts increasing although ℑ(Θ) is 

still decreasing and, therefore, further adjusting of the ANN parameters leads to a 

deterioration of its generalization properties. This problem can be solved by early stopping 

of the learning process when a criterion function value on the testing data starts increasing. 

This procedure is called an implicit regularization. 
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Figure 5.5: Main steps in the model development process using artificial neural networks [18].  

Next step implies choosing a number of hidden layers and a number of neurons in each 

layer. The optimal structure of ANN is usually determined iteratively [18]. For a fixed 

structure, optimal parameters of the ANN are determined using learning procedure and they 

depend on the choice of learning algorithm and on initial ANN parameters. In general case 

criterion function is nonconvex and applying gradient methods can trap model parameter 

vector in a local minimum of the criterion function which is not the optimal solution. 

Therefore, a calibration process implies a number of calibration instances for different initial 

values of model parameters. ANN, defined by its structure and parameters, which has the 

minimal criterion function value on the calibration data is then validated on the validation 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 Annex 1 – Central HVAC system prediction and estimation   

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  
 

data set. To ensure that a model development process results in the best possible model, it 

is required that training, testing and validation data sets have the same statistical properties 

[19]. 

5.3.3 Input variable selection procedure 

One of the most important steps in modelling of complex systems is selection of the 

appropriate input variables. However, this step is usually not concerned to be of an extreme 

importance and most of the input variables are determined heuristically or based on a priori 

knowledge of the system which can result in including too many or too little input variables 

[20]. 

As a consequence of omitting one or more relevant input variables, model will not be able to 

describe the whole dynamics and phenomena of the system. Possibility of omitting relevant 

input variables is much greater for time series in which input candidates are not only 

different variables, but also their lagged values (unless dynamic ANNs are used) which 

significantly increases the number of potential input variables. Including too many input 

variables can be caused by poorly assessed relevance of an input variable or by existence of 

a redundancy among them, where some of the chosen variables contain some useful 

information, but are interdependent, so they contain a redundant information. This case 

leads to an increase in a number of local minima in the criterion function [18] and makes it 

harder to determine the optimal model parameters if a gradient method is used for ANN 

learning. On the other hand, with an increase of input variables, a number of model 

parameters is also increased which, as a consequence, leads to decreased speed and quality 

of the learning procedure. Furthermore, existence of an input variable which does not affect 

the output variable can lead to a deterioration of ANN generalization properties, i.e. the 

model will perform poorly on data that were not used during model calibration procedure. 

These considerations indicate that the optimal ANN input variable set consist of the minimal 

set of variables which can describe the system behavior well enough. A number of IVS 

algorithms were developed and they can be classified in wrapper and filter algorithms [21]. 

5.3.3.1 Wrapper algorithms 

IVS using wrapper algorithms is based on developing a number of ANNs with different input 

vectors and the choice of an appropriate input set is determined based on performance of 

the corresponding ANN. The main drawback of this approach is that such a procedure can 

last very long because it is required to develop a large number of ANNs whereas the 

development of each implies an appropriate choice of the ANN structure and the learning 

algorithm. Additionally, appropriateness of the input variables chosen for a certain ANN 

architecture is not guaranteed for another architecture, so the application of the obtained 

input set is rather limited [20]. 

For 𝑑 potential input variables, a number of possible input subsets is 2𝑑 − 1. Therefore, 

because of the large computational and time requirements, all possible input variable 

combinations are almost never tested. The most commonly used wrapper algorithms are 

forward selection, backward elimination and genetic algorithms [21]. 
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Forward selection is an incremental procedure for forming the optimal input variable set in 

which a number of variables is incrementally increased. In the beginning, one out of 𝑑 variables, for which an ANN with the best performance is obtained, is chosen. Then, the 

input set is enlarged by the next one out of 𝑑 − 1 remained variables for which an ANN 

performance is most improved. A procedure is repeated until adding a new variable to the 

input set does not lead to a significant improvement of the ANN performance. 

Backward elimination is a procedure inverse to a forward selection, i.e. the input variable set 

is incrementally reduced. The procedure starts with an input set which contains all the 

potential input variables and the least relevant variables are progressively eliminated from 

the input set. This procedure is computationally more intensive than the forward selection 

because a large number of inputs requires learning an ANN with much larger number of 

parameters. 

Genetic algorithms introduce stochastic elements in the procedure of selecting the optimal 

input variable set, increasing a possibility of finding the optimal set. Genetic algorithms show 

their advantages in relation to forward selection and backward elimination when the 

candidate set contains variables which only combined with other variables show their 

relevance to an output variable, while taken separately, do not have an excessive 

importance. 

5.3.3.2 Filter algorithms 

Unlike wrapper, filter algorithms use statistical measure of dependence between an output 

variable and potential inputs as a criterion for input selection. Uncoupling IVS procedure and 

model calibration does not only increase the modelling efficiency, but also extends possible 

applications of the obtained input set. However, efficiency of a filter algorithm is highly 

dependent on the statistical measure employed [20]. 

The most commonly used statistical measure of dependence is a linear correlation 

coefficient whose main drawback is that it only determines the linear dependence between 

variables which is particularly problematic in the model development using ANNs because 

they are used as an alternative to linear regression when a dependence between model 

inputs and output is nonlinear. Therefore, it is more meaningful to use an appropriate 

nonlinear statistical measure of dependence, like mutual information [18]. Unlike linear 

correlation coefficient, mutual information is also sensitive to dependences which are 

reflected in higher input-output correlation moments – mutual information is equal to zero 

if and only if two variables are strictly independent [22]. 

Apart from inputs relevance, IVS procedures should also consider redundancy of the input 

variables. In order to do so, a suitable algorithm based on partial mutual information (PMI) 

was developed and it is described in the next subsection. 

5.3.3.3 Input variable selection algorithm based on partial mutual 

information 

For a given continuous random variable 𝑋 with a codomain 𝐶(𝑋), Shannon entropy is 

defined as: 
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H(X) = −∫ f(x) ln f(x)C(X)  dx,  

 

where 𝑥 is an outcome of random variable 𝑋 and 𝑓(𝑥) is its probability density function 

(pdf). Entropy is a term well-known in the information theory and it represents an 

informational description of random events and defines a measure of the information 

content, i.e. random variable uncertainty. Mutual information of two random variables, 𝑋 

and 𝑌, is defined as: 

I(X; Y) = ∫ ∫ f(x, y) ln ( f(x, y)f(x)f(y))C(X)C(Y)  dxdy,  

 

where 𝑓(𝑥) and 𝑓(𝑦) are pdfs of the variables 𝑋 and 𝑌, respectively, and 𝑓(𝑥, 𝑦) is a joint 

pdf of the random vector (𝑋, 𝑌). Mutual information can be expressed using entropies as: I(X; Y) = H(X) + H(Y) − H(X, Y),  

 

where 𝐻(𝑋) and 𝐻(𝑌) are entropies of the random variables 𝑋 and 𝑌, respectively, and 𝐻(𝑋, 𝑌) is a joint entropy of the random vector (𝑋, 𝑌). Mutual information represents a 

reduction in uncertainty of the random variable 𝑌 knowing the random variable 𝑋 and vice 

versa. Figure 5.6 depicts the dependency among mutual information and entropies of the 

random variables 𝑋 and 𝑌. 

Here, 𝐻(𝑌|𝑋) is conditional entropy of 𝑌 given 𝑋, that is, the amount of uncertainty in the 

random variable 𝑌 when the value of 𝑋 is known, and it is formally defined as: 

H(Y|X) = ∫ ∫ f(x, y) ln ( f(x)f(x, y))C(X)C(Y)  dxdy. (1-22) 
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Figure 5.6: Venn diagram showing a relationship among mutual information and entropies of random variables X 

and Y.  

Let us now consider the third random variable, 𝑍. A part of a mutual information 𝐼(𝑍; 𝑌) 

which is not contained in 𝑋, 𝐼(𝑍; 𝑌|𝑋), is called a partial mutual information and it is 

determined using the following expression: I(Z; Y|X) = H(X, Z) + H(X, Y) − H(X) − H(X, Y, Z).  

 

Given 𝑋 and the already reduced uncertainty 𝐻(𝑌|𝑋) shown in Figure 5.6, the PMI 𝐼(𝑍; 𝑌|𝑋) 

is defined as the further reduction in uncertainty of the random variable 𝑌 that is gained by 

the additional mutual observation of the random variable 𝑍. 

Figure 5.7 depicts the dependence among PMI, individual and joint entropies of the random 

variables 𝑋, 𝑌 and 𝑍. PMI is invariant under strictly monotonic transformations which makes 

it robust against possibly nonlinear distortions among random variables [23] and this is one 

of its most important advantages in relation to the linear correlation. However, a problem in 

determining a mutual information is that pdfs of the random variables have to be known. In 

practice, the real pdfs are not known and it is needed to estimate them. This topic is covered 

in the next subsection. 
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Figure 5.7: Venn diagram showing a relationship among partial mutual information and entropies of the random 

variables X, Y and Z. 

PMI-based IVS algorithm is presented in [24]. Details of the algorithm are presented here: 

Algorithm 1: Partial mutual information-based input variable selection 

Input: output variable 𝑌, potential input variables 𝐶 

Result: chosen input variables 𝑋 

Initialize 𝑋 ← ∅ 

while 𝐶 ≠ ∅ do 

       for each 𝑐 ∈ 𝐶 

              Estimate 𝐼(𝑐, 𝑌|𝑋) 

       Determine 𝑐𝑠 ∈ 𝐶 that maximises 𝐼(𝑐, 𝑌|𝑋) 

       if algorithm termination criterion is satisfied then 

  Stop running the algorithm 

       Move 𝑐𝑠 to 𝑋 

In [20] a number of algorithm termination criteria are analyzed. In this work a predefined 

number of the most relevant input variables was used as a termination criterion. 

5.3.3.4 Estimating partial mutual information 

Considering the expression above it can be seen that for estimating an entropy of the 

random variable, it is first required to determine its pdf which is estimated from the 

available historical data, i.e. from the considered random variable outcomes. There are two 

main approaches in estimating a pdf: parametric and non-parametric. 

The parametric approach assumes that data are drawn from a known parametric family of 

distributions, for example the normal distribution with mean μ and variance σ2. Estimating 

the pdf then becomes a problem of estimating the parameters μ  and σ2 . The non-

parametric approach does not assume a form of the pdf, so non-parametric methods are 

usually much more robust and accurate than the parametric ones. A review of the most 

commonly used non-parametric estimation methods can be found in [25]. 
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One of the most commonly used non-parametric pdf estimation methods is kernel density 

estimation and this method is proposed in [24] in the original version of Algorithm 1. 

However, this approach has some drawbacks -- apart from the fact that it is computationally 

very intensive and that it requires relatively large number of data samples for an accurate 

estimation, its behavior is dependent on the kernel function parameters. This problem 

becomes even harder when a dimension of the random variable is increased [26]. Much 

more accurate and computationally less intensive pdf estimation method is k-th nearest 

neighbor method. The method in which an entropy of the random variable is directly 

determined is presented in [23] and it is described here. 

Let us consider three continuous time series, {𝑥𝑡}, {𝑦𝑡} and {𝑧𝑡}, which represent the 

outcomes of random processes {𝑋𝑡}, {𝑌𝑡} and {𝑍𝑡}, respectively. For each vector 𝑣𝑡 ≡{𝑥𝑡,  𝑦𝑡 ,  𝑧𝑡},  𝑡 = 1,2,⋯ , 𝑁 and a fixed integer 𝑘,  1 ≤ 𝑘 ≪ 𝑁, a distance ε𝑘(𝑡) to its 𝑘-th 

neighbour is defined. It means that a set {𝑣𝑡∗}, where 𝑡∗ = 1,2,⋯ ,𝑁,  𝑡∗ ≠ 𝑡, contains 𝑘 − 1 

vectors with distances from 𝑣𝑡  less than ε𝑘(𝑡) and 𝑁 − 𝑘 − 1 vectors with the distance 

greater than ε𝑘(𝑡). 

Therefore, for each 𝑡 distance of 𝑣𝑡 to each element of {𝑣𝑡∗} is determined: ε(t) = {||vt∗ − vt||}.  

 

This set is then sorted and distance ε𝑘(𝑡) is determined by selecting the 𝑘-th element of the 

sorted set. The distance is determined using  𝑚𝑎𝑥 norm, i.e. || ⋅ || =  max {|| ⋅||𝑥, || ⋅||𝑦, || ⋅ ||𝑧}, where || ⋅ ||𝑥, || ⋅ ||𝑦 and || ⋅||𝑧 can be any norm, but this algorithm suggests using  𝑚𝑎𝑥 norm as well. Let us now define a vector 𝑤𝑡 ≡ {𝑥𝑡,  𝑧𝑡},  𝑡 = 1,2,⋯ ,𝑁. 

For each 𝑡 a number of vectors in {𝑤𝑡∗} with distances strictly less than ε𝑘(𝑡) is determined: Nxz(t) = #{t∗ ≠ t;  ||wt∗ − wt|| < εk(t)}.  

 

where # denotes a number of elements in the set. In a similar way 𝑁𝑥𝑦(𝑡) and 𝑁𝑥(𝑡) are 

defined, for which 𝑤𝑡  is defined using vectors {𝑥𝑡,  𝑦𝑡}  and {𝑥𝑡} , respectively. PMI is 

estimated using the following expression: 

 𝐼(𝑍; 𝑌|𝑋) = 1𝑁 ∑[ℎ𝑁𝑥𝑧(𝑡) + ℎ𝑁𝑥𝑦(𝑡) − ℎ𝑁𝑥(𝑡)]𝑁
𝑡=1 − ℎ𝑘−1, 

 

where ℎ𝑛 is the 𝑛-th negative harmonic number defined as ℎ𝑛 = −∑ 𝑖−1𝑛𝑖=1  [23]. 

The 𝑘-th nearest neighbor method is computationally much faster than kernel methods are 

and, regardless of a number of considered variables dimension, it requires defining only one 

scalar parameter, 𝑘.  

Here, we analyses the properties of the PMI estimator in case of the normal distribution for 

which PMI can be determined analytically, as shown in [23]. Multivariate normal distribution 

of the random vector 𝑋 ∈ 𝑅𝑛 with mean 𝑎 ∈ 𝑅𝑛 and covariance matrix 𝑅 ∈ 𝑅𝑛×𝑛 is defined 

by its pdf: 
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f(𝑋) = 1(2𝜋)𝑛/2√𝑅 𝑒𝑥𝑝 (12 (𝑥 − 𝑎)𝑇𝑅−1(𝑥 − 𝑎)),  

 

and it is denoted as 𝑋 ∼ 𝒩𝓃(𝑎, 𝑅) where |𝑅| denotes a determinant of the covariance 

matrix 𝑅. For 𝑛-dimensional normal distribution 𝒩𝓃(𝑎, 𝑅) entropy is determined using the 

following expression: 

𝐻(𝑋) = 𝑛2 (1 + 𝑙𝑛2𝜋) + 12 𝑙𝑛|𝑅|.  

5.3.4 Structure of the prediction model 

This section analyses an identification procedure for prediction models with time horizon of 

12-36 hours. One of the main issues in developing such a multiple-output system is how to 

assess its performance, i.e.: how to define a criterion which will tell us if one model is better 

than the other. The response is trivial if each output of one model outperforms the 

corresponding output of the other model, but generally it is not the case. The simplest 

approach is to define a local criterion function for each output and a global criterion function 

could be e.g.: a sum of the local criterion functions. The first drawback of this approach is 

that we are usually more concerned about sooner prediction hours than about hours at the 

end of a prediction horizon, so we do not want to give the same weight to each local 

criterion function. An alternative is to use weighted sum of the local criterion functions as a 

global criterion, but a question of how to choose these weights remains open. The second 

drawback is that such a model has the same input vector which is used for describing input-

output relationship for each output, which generally does not have to be the optimal choice. 

Certainly, developing a separate model for each output can at least perform as well as one 

model with multiple outputs. The first advantage of this approach is that defining a criterion 

function is trivial because for single-output models the local criterion corresponds to the 

global criterion. The second advantage is that such an approach does not necessarily imply a 

unique input vector for each model. The main drawback of this approach is that the whole 

developing process, including IVS, defining the optimal model structure and model 

calibration has to be carried out multiple times which can be computationally very intensive 

for a large prediction horizon. The concept of this approach is depicted in Figure 5.8. 
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Figure 5.8: A static approach of the prediction system which uses a separate model for each system output. 

Unlike the above-mentioned static approaches, the third approach uses the fact that the 

prediction system is considered as dynamic, i.e.: its output depends on past outputs. This 

dynamic approach is depicted in Figure 5.9. The main idea behind this approach is that the 

model does not have to use all the actual data, but also the provisional data, e.g.: output of 

the 1-hour-ahead model is a prediction for one hour ahead and this value can be used by the 

same model for predicting for two hours ahead. Analogously, this procedure can be 

repeated for obtaining the prediction for k hours ahead. It is expected that this approach will 

be less accurate than the one shown in Figure 5.8 because in this case a prediction error of 

the model is accumulated over the whole prediction horizon. However, if the performance 

of such an approach is not much worse than the one of the static approach, from the 

computational point of view, applying dynamic approach is much more efficient and 

contains significantly less parameters. Additionally, in some applications a larger prediction 

horizon may be required. Extension of the existing prediction model to a larger prediction 

horizon using dynamic approach is trivial; for the static approach this is not the case. 

Therefore, a dynamic approach is chosen for the prediction system. 
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Figure 5.9: A dynamic approach of the prediction system which uses a single model for estimating system 

outputs for the whole prediction horizon. 

5.3.4.1 Adaptive structure of the prediction system 

It is often the case that historical data used for calibrating the prediction model do not cover 

the complete set of possible input-output vectors or that predicted variable values that 

occurred in past differs from values for the coming period due to factors which were not 

considered or did not have a significant impact on the variable during model calibration 

process. Occurrence of these factors can lead to poor predicting abilities of the existing 

prediction model. Therefore, for robust operation of the prediction system the model should 

be able to adapt to possible changes in the system. 
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Figure 5.10: Adaptive module structure / a principle overview. 

Modified structure of the prediction module is shown in Figure 5.10. The system is 

composed of two parts: off-line and on-line. In the off-line part historical data are used for 

obtaining the initial prediction model. The on-line part of the module uses the initial model 

developed in the off-line part in order to generate predictions. When the data are available, 

they are compared to the corresponding predictions which results in the prediction error for 

the certain time instant. Model parameters are then tuned such that the prediction error is 

decreased. The presented procedure of using the feedback information on prediction 

accuracy for model parameters tuning introduces an adaptation ability to module. 

5.3.4.2 Possible approaches to the on-line tuning of model parameters 

Most real systems are time-variant. In order to track changes in the system, its model 

parameters should be continuously estimated. The on-line part of the prediction system, 

mentioned in the previous section, is the tool for continuous tuning of the model 

parameters such that the model tracks the actual predicted variable evolution as accurately 

as possible. 

Artificial neural network (ANN) is a flexible model structure that can be easily and 

systematically calibrated and adapted. There is a large number of methods suggested in 

literature for the so called recursive neural network learning. Some of them are based on the 

recursive approximation of typical gradient methods [12], [27]. On the other hand, some 
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recursive methods are based on the methodology for dynamic system state estimation [28]-

[31]. These methods are based on the state-space representation of the ANN model [32]: wk+1 = wk + rk, dk = G(xk, wk) + ek, 
 

where 𝐺 is a function which defines the input-output mapping and is determined by the 

ANN structure, 𝑥𝑘 is an input vector, 𝑤𝑘 is a vector of ANN parameters and 𝑒𝑘 is an error 

vector. In the above equation a vector of parameters 𝑤𝑘 corresponds to a stationary process 

with identity state matrix, driven by process noise 𝑟𝑘. ANN model written in this form 

enables using extended Kalman filter (EKF) or unscented Kalman filter (UKF) for the ANN 

parameter estimation. However, the ANN models with relatively large number of inputs and 

nodes in the hidden layer result in a large number of parameters, and applying EKF or UKF 

becomes intractable due to numerical stability issues [33]. On the other hand, recursive 

gradient methods for ANN learning are quite robust and their application is not limited to 

ANNs with a small number of parameters. Therefore, this approach in recursive ANN 

learning is analyzed hereinafter. 

5.3.4.3 Applying the on-line tuning procedure in normal operation 

We use the initially developed prediction model as an initial prediction model for the on-line 

part of prediction system (see Figure 5.10). Gradient descent method with momentum term 

is used for the recursive ANN learning. ANN parameters Θ are updated based on the 

following relation: ΔΘ(k) = −α∇ℑν(Θ(k)) + γmΔΘ(k − 1),  

 

where ΔΘ(𝑘) = Θ(𝑘 + 1) − Θ(𝑘), α is the learning coefficient, ∇ℑν(Θ(𝑘)) is the gradient of 

local criterion function on the corresponding data set and γ𝑚 is the nonnegative momentum 

term which speeds up the learning convergence while attenuating the parasitic oscillations 

[12]. If the parameter vector Θ is to be updated using more than one data sample, we 

consider two different learning styles: (i) incremental learning in which the model 

parameters are updated consecutively after each data sample is presented to the model; 

and (ii) batch learning in which the parameters are updated once after all the data samples 

are presented. The recursive ANN learning is performed using MATLAB® Neural Network 

Toolbox [34].  

The on-line tuning parameters, learning coefficient α and momentum term γ𝑚  can be 

determined based on the initial set of data that were used for obtaining the initial model. 

However, those data might not contain an evident variation in predicted variable, thus no 

significant difference in the performance of off-line and on-line model would be observed. 

Therefore, on-line tuning parameters can be determined based on the performance of on-

line prediction model on the modified testing data – e.g. a linear trend is added to the 

original data such that predicted variable mean increases by 50% of the initial mean per 

month. 
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5.3.5 Concept of conditional adaptation (outliers handling) 

In addition to the normal operation, another possible scenarios which affect the prediction 

system can occur. In the normal operation scenario we assumed that data do not contain 

potentially irregular or corrupted data samples (referred to as outliers). However, it is often 

the case that data on actual data are corrupted -- using these data samples within the on-

line tuning procedure could cause an undesirable model behavior. Instantaneous change in 

mean may be a result of many different external factors that influence the predicted 

variable, but it may also be caused by a meter problem – in the latter case data are 

characterized as corrupted. 

The basic idea in avoiding the on-line tuning procedure using corrupted data is by marking 

those data, i.e. if a data sample is suspected to be an outlier, it is marked and that data 

sample will not be used in the on-line tuning procedure. In order to recognize an outlier 

occurrence, min/max values of the model inputs are used as boundaries for filtering the 

outliers.  
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6 Nomenclature 

COP - Coefficient of Performance 

troom K Room temperature 

tenv K Environment temperature 

Qroom kW Heat flux to a heated space 

Qenv 
kW 

Heat flux from cold environment to a heat 

pump 

Wnet,in 
kW 

Input mechanical power provided to a heat 

pump 

Pel kW Electric power �̇�HE kW Heat transfer rate across the heat exchanger 

tm 
o
C Mean temperature of the water 

tw,in 
o
C Inlet water temperature 

tw,out 
o
C

 
Outlet water temperature ∆𝜏 s Sampling time 𝐸t,HE 

kWh 
Delivered heat to the water in the heat 

exchanger   

COPH 
- 

Carnot Coefficient of performance for heating 

mode �̇�out kW Output heat power 

Win kW Input power 

∆S kJ/K Entropy change 

COPC 
- 

Carnot Coefficient of performance for cooling 

mode �̇�in kW Input heat power 

COPReal - Real coefficient of Performance 

iT  o
C 

The fluid temperature change along the section 

„i“ 

f - Pump efficiency factor 

cpw J/kg K Specific heat capacity of water 

δ mm the insulation thickness 

kins W/mK thermal conductivity of the insulation 

D mm inner diameter of the pipe 

L m the length of the pipe 

tw,mean 
o
C Mean water temperature 

ρ kg/m
3
 Density 

A,B,C,D - The equation coefficients  

µ Pas Dynamic viscosity 

k W/mK Thermal conductivity 

ω m/s Water velocity 

Re - Reynolds number 

Pr - Prandtl number 

Nu - Nusselt number 

F - Friction factor 

hin 
W/m

2
K 

The heat transfer coefficient at the contact 

surface between water and pipe 

hout 
W/m

2
K 

Heat transfer coefficient at the contact surface 

between air and pipework 
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U W/m
2
K Overall heat transfer coefficient �̇�l W/m Heat losses/gains per unit length of pipe �̇� W Heat gains/losses of the pipe 

tw,out,LAST 
o
C Temperature used in iteration process 

LTHW 
- 

Low temperature hot water 

MTHW 
- 

Medium temperature hot water 

HTHW 
- 

High temperature hot water 

η % Pump efficiency 

Q m
3
/s Pump water flow rate 

Hnom m Nominal pump head 

qnom 
m

3
/s 

volume (or mass) flow at nominal working 

regime 

nnom rpm pump rpm at nominal working regime 

Ηuk - Total efficiency of pump and engine 

Qs m
3
/s volume (or mass) flow required by FC 

Qs,nom 
m

3
/s 

volume (or mass) flow at nominal working 

regime 

∆p Pa Pressure differential �̇� m
3
/s Volume flow rate 

Ns - Pump specific speed 

BEP - Best efficiency point pump 

nomp  
Pa 

nominal differential pressure measured on 

pump inlet/outlet 

endp  

Pa 

differential pressure at inlet/outlet measured 

on the „last“ radiator in the longest line - only 

for radiators/ground floor heating (when all 

radiators are opened) 

s s,nom nom end p( , , , , )E f Q Q p p   kW circulation pump energy consumption 
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Executive summary 

Integrated energy management of buildings and grids installed with the 3Smart project is on the side 

of buildings divided into three vertical levels – zone level, central HVAC system level and microgrid 

level. In each of these levels the energy management algorithms are classified into three parts – (i) 

prediction and estimation, (ii) model predictive control, and (iii) equipment interfacing – and the 

algorithms are implemented via a sequence of modules. 

The modules are designed, commissioned and tested on different pilot buildings in the Danube 

region. 

Within this deliverable the focus is put on central HVAC system level model predictive control.  

The central HVAC system level model predictive control modules are presented via corresponding 

interfacing tables that explain what data are used by them as inputs and what are their output data. 

The algorithms behind are in more detail explained in the annexed document. 
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1 Introduction 

Within the 3Smart project the following model predictive control submodules are designed, 

commissioned and tested on the central HVAC system level: 

HVAC.MPC.1 – module for model predictive control that decides on the starting temperature and 

possibly flow of the medium for maintaining the building climate coming from a heat exchanger 

(tested in UNIZGFER, HEP, IDRIJA buildings, STREM school, STREM retirement and care centre and 

EON buildings within 3Smart); 

HVAC.MPC.2 – module for model predictive control that decides on the starting temperature of the 

medium for maintaining the building climate coming from a heat pump (tested in UNIZGFER, HEP, 

STREM retirement and care centre, EPHZHB and EON buildings within 3Smart). 

In the following chapter the modules are presented with their interface tables showing which data 

they use as inputs and which data they provide as outputs to be at the disposal to submodules and 

building actuation elements. Detailed explanations of algorithms behind are provided in the 

previously delivered 3Smart document D4.3.1 (related to model predictive control). D4.3.1 model 

predictive control part is updated based on feedback from pilot sites and provided as Annex 1 to this 

document. 

Source and sink for the data used by the module is a properly structured 3Smart database. Its 

structure in the part concerned by the module is provided in Annex 2. 

2 HVAC.MPC.1 and HVAC.MPC.2 submodules 

HVAC.MPC.1 submodule is used for model predictive control that decides on the starting 

temperature and flow of the medium for maintaining the building climate coming from a heat 

exchanger. Within 3Smart it is tested in UNIZGFER, HEP, IDRIJA buildings, STREM school, STREM 

retirement and care centre and EON buildings. 

HVAC.MPC.2 submodule is used for model predictive control that decides on the starting 

temperature and flow of the medium for maintaining the building climate coming from a heat pump. 

Within 3Smart it is tested in UNIZGFER, HEP, STREM retirement and care centre, EPHZHB building 

and EON buildings. 

The module interface is defined in Table 2.1. 

Table 2.1: Input-output variables list of the heating substation/heat pump control module. 

 Source/destination 

submodule 

Variable 

Inputs Zone-level submodules - temperature predictions in the zones 𝑇z 

- predicted required thermal energy input in 

the zones 𝐸t,z 

Parameters of the heating/cooling zone elements 
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model (for maximum attainable heating energy 

and electricity consumption): 

- fan coils: 𝑎fc,𝑣 , 𝑏fc,𝑣 , 𝑙fc,𝑣 , �̅�e,fc,𝑗 , 𝐸𝑡,fc,0 

(please refer to Section 3.5 of Annex 1) 

- radiators: 𝑎, 𝑏, 𝑛r, 𝑚r, 𝑐r, 𝑈0 (please refer to 

Section 3.6) 

- underfloor heating: 𝑚fh, 𝑐fh, 𝑈0 (please 

refer to Section 3.6) 

- measured medium outlet temperatures on 

the radiator/underfloor heating/cooling 

units 𝑇𝑤,∙𝑜𝑢𝑡
 (please refer to Section 3.6) 

Central HVAC system level 
submodules 

- predicted non-controllable thermal energy 

loads 𝐸t,nc 
Hydraulic model of the plant: 

- parameters of the Q-p characteristics, 𝐶𝑄−𝑝 (please refer to Section 3.2) 

- parameters of the medium flow model 

(nominal conditions) 𝐶𝑞,𝑗 , 𝑗 ∈ 𝒥 

- parameters of the heat pump coefficient of 

performance 𝐶𝑂𝑃, γp  

- parameters of the temperature model at the 

zone element inlets 𝐶𝑇,𝑗, 𝑗 ∈ 𝒥  

- parameters of the heat losses model in the 

pipework (defined with 𝐶𝑇,𝑖 and 𝐶𝑞,𝑖)  
- parameters of the hydraulic pump model 

electricity consumption 𝑉q, 𝑝end  

Microgrid level submodules - electricity cost function and constraints on 

the prediction horizon 𝐽𝑀∗ (𝐸𝑒) 

Other - air ambient temperature 𝑇env (please refer 

to Section 3.4), the medium heat capacity 𝑐𝑤 

- cost of heating energy 𝑐t 
Outputs Zone level submodules - heating cost and constraints for different 

zones on the prediction horizon 𝐽𝐻∗ (𝐸𝑡,𝑧) 

Zone level submodules 
/Central HVAC system 

level submodules 

- predicted temperatures and flows of the 

supplied medium over the prediction 

horizon 𝑇s, 𝑄s,nom or 𝑄s  
Microgrid level submodules - predicted electrical energy consumption 𝐸e of the heating/cooling system on the 

prediction horizon 

District heating system 
operator (optional) 

- predicted thermal energy consumption 𝐸𝑡 

of the heating/cooling system on the 

prediction horizon 
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Abstract 

(for dissemination) 

This deliverable discusses the model predictive control (MPC) 

design procedure for the heating substation and heat pump 

control in presence of the time-varying prices for the heat and 

electricity. MPC module on each level enables coordination with 

neighbouring levels in the hierarchical organization, so here 

coordination with zone-level and microgrid-level MPC is 

considered.    

Keyword List MPC, heating substation, heat pump, energy losses, hydraulic 

pump, pipework, fan coil, radiator, underfloor heating 
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Executive summary 

The building management is achieved with the optimal control that considers the dynamical 
model of the building, its current conditions and available predictions of aimed system 

operation and disturbances to optimise the building performance index under provided 
constraints. Specifically, this annex to D4.5.3 document discusses the design of the model 
predictive control (MPC) module for the central heating, ventilation and air conditioning 

(HVAC) system level. 

Objective of the designed HVAC MPC module is conditioning of the medium which is used 
for heating/cooling in the building, while considering the required thermal energy flows to the 

zones, thermal losses in the pipework, its temperature and hydraulic model, model of the 
hydraulic pump and models of the heating/cooling elements in the zones. Variables that are 
optimised by the module are the outgoing temperature of the medium and possibly also the 

flow of the medium. Objective of the derived MPC module is to ensure delivery of the 
required amount of thermal energy to the zone elements on the prediction horizon at the 

minimum cost. 
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1. Nomenclature 

In the remainder of this deliverable is the following notation employed. Variable 𝑇𝑠(𝑘) 
denotes the temperature of the supplied medium at the time instant 𝑘. Discrete time indices 

are denoted with 𝑘 ∈ {0,1,2, … , 𝑁}, zone indices are 𝑖 = {1,2, … , 𝑛z}, and element indices are 𝑗 ∈ {1,2, … , 𝑛e}, where 𝑁 is the length of the prediction horizon, 𝑛z is the number of zones 

and 𝑛e is the overall number of heating/cooling elements throughout all zones.  

1.1 Symbols 𝑇d  sampling time [s] 𝑇s  temperature of the medium supplied by the central HVAC system [∘C] 𝑇z temperature in zone(s) [∘C] 𝑇w,𝑒𝑎𝑣   mean medium temperature in the heating/cooling element [∘C] 𝑇w,𝑒𝑖𝑛  medium temperature at the inlet of the heating/cooling element [∘C] 𝑇w,𝑒𝑜𝑢𝑡  medium temperature at the outlet of the heating/cooling element [∘C] 𝑇𝑎,𝑒𝑖𝑛  air temperature at the inlet of the heating/cooling element [∘C] 𝑇env  temperature of the environment [∘C] 𝑄a   air volume flow [m3 /h] 𝑄s  medium flow supplied by the hydraulic pump [m3 /h] 𝑄s,nom  medium flow supplied by the hydraulic pump in the nominal conditions (all valves 

open) [m3 /h] 𝑈o overall heat transfer coefficient of a system [W/K] 𝐸e,fc  electrical energy consumed by the fan coil unit in the discretisation interval [kWh] 𝐸e,p  electrical energy consumed by the pump in the discretisation interval [kWh] 𝐸𝑡,𝑙  pipework thermal losses in a single discretisation interval [kWh] 𝐸t,fc thermal energy of a fan coil unit affecting the zone in a single discretisation interval 

[kWh] 𝐸t,fh  thermal energy of a floor heating affecting the zone in a single discretisation interval 

[kWh] Et,hp  thermal energy generated on a heat pump in a single discretisation interval [kWh] 𝐸t,r  thermal radiator energy affecting the zone in a single discretisation interval [kWh] 𝐸𝑡,z  required thermal energy input to a zone in a single discretisation interval [kWh] 𝐸t,nc non-controllable thermal energy loads in the discretisation interval [kWh] 𝑃p  consumed electrical power on the hydraulic pump [kW] 𝑉𝑝  vector of parameters for a hydraulic pump efficiency model COP  heat pump coefficient of performance 
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𝑐w specific heat capacity of a medium [J/kg/K] 𝑐a specific heat capacity of air [J/kg/K] 𝑐e  cost of electrical energy [€/kWh] 𝑐t  cost of thermal energy [[€/kWh]] 𝑐r specific heat capacity of a radiator system (medium + radiatior) [J/kg/K] 𝑐fh specific heat capacity of a floor heating system (concrete+medium) [J/kg/K] 𝑚w mass of a medium within a system [kg] 𝑚a air mass within a system [kg] 𝑚r effective mass of a radiator system [kg] 𝑚fh effective mass of a floor heating system [kg] 𝑝p  differential pressure on a hydraulic pump [Pa] 𝑝p,nom  nominal differential pressure on a hydraulic pump (all valves open) [Pa] 𝑝end  pressure on a last branch of a pipework [Pa] 𝜌w   density of a medium [kg/m3 ] ηp   hydraulic pump efficiency factor γp  heat pump efficiency factor ∙  general placeholder 

1.2 Abbreviations MPC  model predictive control 𝑆𝐿𝑃  sequential linear programming 

SQP sequential quadratic programming 

HVAC heating, ventilation and air conditioning 

 

2. General scheme 

This deliverable discusses design of a model predictive controller (MPC) [1] for a heating 
substation and a heat pump on the central heating, ventilation and air conditioning (HVAC) 

system level of the hierarchy of the building-side EMS introduced in 3Smart via the concept 
document D4.1.1 [2]. Aim of the designed control module is to ensure that delivery of a 
required amount of thermal energy to the zone level 𝐸t,z is possible, where the fan coils, 

radiators and underfloor heating are employed, and yet with a minimum cost. The required 

energy inputs are issued from the zone-level MPC module (see D4.5.3 – zone level MPC).  

Variables that are optimised by the module are the outgoing temperature of the medium 𝑇s 
and possibly also the flow of the medium 𝑄s  within sampling periods of the prediction 
horizon. The formulated optimisation problem considers the models of the actuated elements 

in the zones, heat losses in the pipework, efficiencies of the central HVAC system units, 
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predictions of the required thermal energy input to all zones 𝐸t,z on the horizon, as well as the 

variable prices of the electrical and thermal energy on the prediction horizon, 𝑐e and 𝑐t 
respectively. 

Intrinsically, the considered optimisation problem has non-convex constraints and the 
objective function. Herein, the proposed solution for solving the nonlinear MPC problem 

employs a sequential linear programming (SLP) method. Compared to the sequential 
quadratic programming (SQP) counterpart, SLP has a slower convergence but neither requires 

the convexity of the objective function nor the continuity of the corresponding Hessian matrix 
in the domain of the problem to be deployed. 

3. Mathematical models 

The control problem is stated with respect to all of the significant integrated subsystems. 
Without introducing any significant inaccuracy in the model, static models are assumed for 

certain subsystems, e.g. the electrical energy consumed on the heating elements, heat losses in 
the pipework etc. The former simplification is possible since the dynamics of respective 

subsystems are significantly faster compared to the discretisation interval of the heating 
substation or the heat pump 𝑇d. Mathematical models of the subsystems employed for the 

design of the model predictive control problem are given in the following sections. 

For a more detailed description of the heat pump model, hydraulic pump model and the heat 
losses in the pipework please refer to [3]. Technical report on the subject of the zone elements 

modelling and estimation is discussed in [4]. 

3.1 Medium flow through the pipework 

From the mass medium flow through the controlled hydraulic pump of the heating/cooling 

system follow the medium flows through each segment of the pipework  𝑄𝑗 = 𝐶𝑞,𝑗𝑄𝑠,#(3 − 1)  

where 𝑄𝑗  is the flow through the 𝑗-th pipework segment, 𝐶𝑞,𝑗 is the static coefficient 

associated to the 𝑗-th segment and 𝑄𝑠  is the realised medium flow through the hydraulic 
pump. By employing the mass conservativeness law, the realised mass flow 𝑄𝑠  is computed 

by considering the medium flows to the zones 

𝑄𝑠 =∑𝑄𝑣𝑣 , #(3 − 2)  

where 𝑣 denotes the index from the set of zone branches. Herein, 𝑄𝑣  may denote the medium 
flow through the fan coils and radiators/underfloor heating units, depending on the 

configuration. 

The medium flows through the system are influenced depending on the type of the employed 
zone actuator. Thus, if the heating is realised through the fan coils, a static hydraulic situation 
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may be considered. In the respective scenario, the flow through each branch is determined 

solely by the supplied flow through the hydraulic pump, resulting with a single flow decision 
variable 𝑄𝑠  per time instant of the prediction horizon. 

Conversely, by assuming that radiators/underfloor heating units are used as actuators in the 

zone level, the optimised flow through the hydraulic pump 𝑄𝑠  is determined by the flows 
through respective heating/cooling units, denoted with 𝑄𝑞 , as described in Section 3.6. 

Respective actuators are controlled by the installed valves that determine the effective flows 𝑄r that ensure required amount of thermal energy in the zones for a selected temperature of 

the medium. 

Remark. The assumption of the derived model is that the state of the actuated valves in the 

zones does not influence the hydraulic conditions in surrounding environment of the 
pipework, i.e. the pressure drop on each of the parallel branches is approximately constant 

regardless of the locally applied controls to the valves, or the hydraulic pump is controlled in 
such a way that this influence is minimized. 

3.2 Electric energy consumption of a hydraulic pump 

The electric energy consumption of a hydraulic pump is incorporated in the electricity cost of 
the heating/cooling system. With regards to the employed actuators in the zones are two 
different scenarios employed: 

i) Static hydraulic conditions with fan coils in the zones: 

Consumed electrical energy on the pump is expressed as a function of the supplied medium 

flow and the differential pressure on the pump [3] 

𝑃𝑝 = 10.2105 𝑔 ⋅ 𝜂𝑝−1 ⋅ 𝑄𝑠3.6 ⋅ 𝑝𝑝 , #(3 − 3)  

where 𝑔 is the gravitational acceleration constant, 𝜌𝑤  is the medium density, 𝑝𝑝 is the 

differential pressure on the pump and η𝑝  is the pump efficiency. The differential pressure on 

the pump is determined by the 𝑄- 𝑝 characteristics of the plant [3], which is given by 𝑝𝑝 = 𝐶𝑄−𝑝[𝑄𝑠2, 𝑄𝑠, 1]⊤ ,#(3 − 4)  

where 𝐶𝑄−𝑝 ∈ ℝ3 is the identified vector of parameters. 

The pump efficiency can be accurately approximated by a second-degree polynomial ηp = 𝑉p[𝑄𝑠2,𝑄𝑠,1]⊤ ,#(3 − 5)  

where 𝑉𝑝 ∈ ℝ3 is the vector of identified model parameters. 

ii) Dynamic hydraulic conditions with radiators/underfloor heating in the zones: 

 Model of the consumed electrical energy on the hydraulic pump is given by [3] 
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𝑃𝑝 = 10.2105 ⋅ g ⋅ ηp−1 ⋅ 𝑄𝑠3.6 (𝑝end+ (𝑝𝑠,nom−𝑝end) 𝑄s𝑄s,nom), #(3− 6)  

where the index nom in the variable symbol denotes the condition that all valves of the 
radiator/underfloor heating system are open. Thus, 𝑝𝑠,nom  is the pressure on the pump and 𝑄𝑠,nom  the flow through the pump given that all valves on the radiator/underfloor heating 

actuators are open, whereas 𝑝end is the predefined pressure on the farthest branch of the 
radiator/underfloor heating/cooling unit [3].  

In this scenario, 𝑄𝑠  is determined by the medium flows through the pipework branches with 

heating elements 𝑄𝑞  (3-2). The nominal medium flow 𝑄𝑠,nom  is the decision variable in the 

optimisation problem, whereas the following relation applies between 𝑄𝑞  and 𝑄𝑠,nom 0 ≤  𝑄𝑞 ≤ 𝐶𝑞,𝑗[𝑄𝑠,nom2 , 𝑄𝑠,nom , 1]⊤ .#(3 − 7)  

 

3.3 Heat losses model and temperature model 

Temperature difference between the medium in the pipework and the surroundings incurs the 
thermal energy losses. It is necessary to model respective losses to ensure that the required 

amount of thermal energy is attainable on the zone elements [3], which is achieved by 
designating the supplied thermal energy from the central HVAC system towards the building. 

Heat losses and the temperatures in the pipework are usually described with the coupled 
model resulting with the implicit relations [3]. 

Herein, the simplified and explicit model of the heat losses is considered that can be 
employed in the MPC design. Thus, employed temperature model is [3] given by 𝑇𝑤,𝑖𝑖𝑛 = 𝐶𝑇,𝑖[𝑇𝑠,𝑄𝑠2,𝑄𝑠, 1]⊤ , 𝑖 ∈ ℐ, #(3− 8)  

where 𝑇𝑤,𝑖𝑖𝑛  is the medium temperature at the beginning of the 𝑖-th segment and 𝐶𝑇,𝑖 ∈ ℝ4 is 

the identified vector of model parameters. The temperature model together with the model of 
medium flows through the segments is used to derive the energy losses model in the 

pipework, whereas the model of the medium inlet temperatures at the zone elements 𝐶𝑇,𝑗, 𝑗 ∈𝒥 is used to account for the attainable thermal energies in the zones. 

The thermal energy losses model is given by 𝐸𝑡,𝑙 = 𝐸𝑡,𝑙,𝑠 +𝐸𝑡,𝑙,𝑟 , #(3 − 9)  

where 𝐸𝑡 ,𝑙,𝑠 denotes the thermal losses of the supply pipeworks (before the zone 

heating/cooling elements) and  𝐸𝑡,𝑙,𝑟 the thermal losses of the return pipework (after the zone 

heating/cooling elements). The thermal losses model of the supply pipework is obtained by 
employing the temperature drop model and hydraulic model of flows through the pipework 

segments 
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𝐸𝑡,𝑙,𝑠 = 112.96 ∙ 106( 𝑇𝑑𝑄𝑠𝑐𝑠(𝑇𝑠−𝑇𝑤,2𝑖𝑛 )+∑∑ 𝑇𝑑𝑄𝑖𝑐𝑠(𝑇𝑤,𝑖𝑖𝑛 −𝑇𝑤,𝑙𝑖𝑛 )𝑙∈ℒ𝑖𝑖∈ℐ )= 𝑓𝐸𝑡𝑙𝑠(𝑄𝑠,𝑇𝑠),#(3 − 10)  

where ℒ𝑖  denotes the set of pipework branches directly connected to the supply branch 𝑖. 
Similarly, the model of the thermal losses on the return pipework is given by 

𝐸𝑡,𝑙,𝑟 = 112.96 ∙ 106∑∑𝑇𝑑𝑄𝑖𝑐𝑠(𝑇𝑤,𝑖𝑜𝑢𝑡− 𝑇𝑤,𝑙𝑜𝑢𝑡)𝑙∈ℒ𝑖 = 𝑓𝐸𝑡𝑙𝑟(𝑄𝒥, 𝑇𝑤,𝒥𝑜𝑢𝑡)𝑖∈ℐ , #(3 − 11)  

where 𝑄𝒥 denotes the vector of medium flows through the zone elements, which are indexed with the 

set 𝒥, and 𝑇𝑤,𝒥𝑜𝑢𝑡  denotes the temperature at the outlet of the same elements. The outlet 

temperatures on the heating/cooling elements follow from their thermodynamic model, which 
are discussed in the following sections. 

3.4 Heat pump model 

The heat pump thermal model is derived from the characteristic equation of an ideal Carnot 
cycle [3]. Coefficient of performance of the real heat pump for heating mode is given by 

𝐶𝑂𝑃 = γp 𝑇𝑤,ℎ𝑝𝑎𝑣 +273.15𝑇𝑤,ℎ𝑝𝑎𝑣 −𝑇env , #(3− 12)  

where γp is the parameter of efficiency characterising a specific heat pump, 𝑇env  is the 

temperature of the ambient air and 𝑇𝑤,ℎ𝑝𝑎𝑣  is the mean temperature of the medium in the heat 

pump, 

𝑇𝑤,ℎ𝑝𝑎𝑣 = 𝑇𝑤,ℎ𝑝𝑖𝑛 +𝑇𝑤,ℎ𝑝𝑜𝑢𝑡2 , #(3 − 13)  

where 𝑇𝑤,ℎ𝑝𝑖𝑛  denotes the temperature of the return medium from the heating/cooling circuit 

and 𝑇𝑤,ℎ𝑝𝑜𝑢𝑡 ≡ 𝑇𝑠 is the temperature of the supplied medium.  

Coefficient of performance is in the cooling mode given by 

𝐶𝑂𝑃 = γp 𝑇𝑤,ℎ𝑝𝑎𝑣 +273.15𝑇env−𝑇𝑤,ℎ𝑝𝑎𝑣 . #(3− 14)  

The energy balance equation on the heat exchanger in a single discretisation interval is given 

by 𝐸𝑡,hp = 112.96∙106𝑇d𝑄s𝑐w(𝑇𝑠−𝑇𝑤,ℎ𝑝𝑖𝑛 ),#(3− 15)  

where 𝑐w is the specific heat capacity of the medium for its mean temperature 𝑇𝑤,ℎ𝑝𝑎𝑣  and 𝑇d is 
the discretisation interval. Heating energy generated on the heat pump is dissipated on the 
heating/cooling elements of the system, through the heat losses and other non-controllable 
thermal loads. Thus, the thermal energy balance equation in the system is determined with 
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𝐸t,hp = 𝐸𝑡,𝑙+𝐸𝑡,nc+∑ 𝐸𝑡,z(𝑖),𝑖 #(3− 16)  

where 𝐸𝑡,𝑙 are the energy losses, 𝐸𝑡,nc the non-controllable thermal loads and the sum on the 

right-hand side is the cumulative thermal energy output reference on the heating/cooling units 
in the zones. In (3-15), model of the energy losses 𝐸𝑡,𝑙 is given by (3-8)-(3-10), non-

controllable loads predictions 𝐸𝑡,nc in the horizon are inputs of the HVAC MPC module as 

well as the required thermal energy to be delivered to the zones ∑ 𝐸𝑡,z(𝑖) 𝑖 . 

By combining (3-12)-(3-15), model of the heat pump is in the heating mode given by 

COP = γp 2𝑇s −12.96 ∙ 106 𝐸t,hp𝑇d𝑄s𝑐w+2 ⋅ 273.15(2𝑇s −12.96 ∙ 106 𝐸t,hp𝑇d𝑄s𝑐w)− 2𝑇env , #(3− 17)  

whereas the heat pump model in the cooling mode is 

COP = γp 2𝑇s −12.96 ∙ 106 𝐸t,hp𝑇d𝑄s𝑐w+2 ⋅ 273.152𝑇env − (2𝑇s −12.96 ∙ 106 𝐸t,hp𝑇d𝑄s𝑐w) . #(3− 18)  

Final expressions for the heat pump are obtained by employing (3-9)-(3-11),(3-16) in (3-

17)/(3-18). 
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3.5 Fan coil unit 

Thermal model of the fan coil unit consists of the air and medium thermal balance equations 
[2]. By neglecting the dynamics of the water mass cooling/heating in the considered fan coil 

unit, which is here assumed due to a significantly slower sampling rate of the designed control 
system than is the value of the respective medium thermal time constant, the following 

equations are obtained 0 = 13.6𝑄𝑗𝑐𝑤(𝑇𝑤,𝑗𝑖𝑛 −𝑇𝑤,𝑗𝑜𝑢𝑡) − 𝑈0,𝑗(𝑇𝑤,𝑗𝑎𝑣 −𝑇𝑎,𝑗𝑖𝑛),#(3 − 19)  0 = 13.6𝑄𝑎,𝑗𝑐𝑎(𝑇𝑎,𝑗𝑖𝑛 −𝑇𝑎,𝑗𝑜𝑢𝑡)+𝑈0,𝑗(𝑇𝑤,𝑗𝑎𝑣 −𝑇𝑎,𝑗𝑖𝑛),#(3 − 20)  

where 𝑗 ∈ ℱ denotes the index of the fan coil and ℱ ⊆ 𝒥 is a set of all fan coils indices, 𝑇𝑤,𝑗𝑖𝑛  

and 𝑇𝑤,𝑗𝑜𝑢𝑡 are the medium temperatures at the inlet and outlet of the considered fan coil 

respectively, 𝑇𝑤,𝑗𝑎𝑣  is the mean medium temperature in the fan coil unit, 𝑇𝑎,𝑗𝑖𝑛  and 𝑇𝑎,𝑗𝑜𝑢𝑡 are the air 

temperatures in the inlet and outlet respectively, 𝑄𝑎,𝑗 is the air flow through the fan coil and 𝑄𝑗  the medium flow through the same fan coil unit, 𝑐𝑎  and 𝑐𝑠 are the specific heat capacities 

of air and medium respectively, 𝑈0 is the corresponding heat transfer coefficient from water to 
air. Note that the air inlet temperature equals the temperature of the zone where the fan coil is 

situated, 𝑇𝑎,𝑗𝑖𝑛 = 𝑇z,𝑖 , #(3 − 21)  

where 𝑖 denotes the index of the corresponding zone. The medium flow through the fan coil is 
obtained from (3-1) and the supply medium temperature at the fan coil inlet from (3-8). 

The mean medium temperature in the fan coil unit is given by 

𝑇𝑤,𝑗𝑎𝑣 = 𝑇𝑤,𝑗𝑖𝑛 +𝑇𝑤,𝑗𝑜𝑢𝑡2 . #(3− 22)  

Thermal energy supplied to the zone by the fan coil unit is determined with 𝐸t,fc,𝑗 = 112.96∙106𝑇d𝑄𝑗𝑐𝑤(𝑇𝑤,𝑗𝑖𝑛 −𝑇𝑤,𝑗𝑜𝑢𝑡) = 112.96∙106𝑇d𝑄𝑎,𝑗𝑐𝑎(𝑇𝑎,𝑗𝑖𝑛 −𝑇𝑎,𝑗𝑜𝑢𝑡).#(3 − 23)  

By combining equations (3-18) and (3-22) is the dependence of the water outlet temperature 

on the fan coil derived, whereas by including the equation (3-21), the thermal energy 
attainable on the fan coil is obtained, 

𝐸𝑡,fc,𝑗 = 13.6 ⋅ 106  Td2 13.6 𝑄𝑗𝑐𝑤𝑈0,𝑗,3(𝑇𝑤,𝑗𝑖𝑛 − 𝑇z,𝑖)2 13.6𝑄𝑗𝑐𝑤+ 𝑈fc,𝑗,3 , #(3 − 24)  

where 𝑇z,𝑖 is the air temperature in the zone, 𝑈0,𝑗 is the heat transfer coefficient of the fan coil 

unit given by the static characteristics 
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𝑈0,𝑗 ≡ 𝑈0,𝑗,𝑣 = 𝑎fc,𝑣1 + 𝑏fc,𝑣𝑄𝑗−𝑙fc,𝑣 . #(3− 25)  

In (3-25) 𝑣 = {1,2,3} is the speed of the fan and 𝑎fc,𝑣 , 𝑏fc,𝑣  and 𝑙fc,𝑣 are corresponding 

parameters obtained from the technical datasheet and identification [3]. The requirement for 

the heating substation module controller is posed such that the maximum available heating 
energy on the fan coil should be at least as large as is the required energy by the zone-level 

MPC. 

The attainable thermal energy constraint is given by |𝐸𝑡,𝑧,𝑗| ≤ |𝐸𝑡,fc,𝑗|,#(3− 26)  

where 𝐸𝑡 ,𝑧,𝑗  is the thermal energy request for the 𝑗-th actuator and the absolute function is 

used to cover both the heating and cooling modes. 

The experimental tests have shown that the electrical energy consumption of the fan coil does 
not differ significantly between the different fan speeds whereas the highest difference is 

observed between the first speed and the turned off state of the fan operation. Therefore, a 
simple electrical energy consumption model is assumed herein that considers only a bimodal 

operation of the fan coil to estimate the consumed electrical energy. If the required thermal 
energy input to the zone at the time instants is larger than the energy that can be ensured with 
the first speed of the fan, the electrical equivalent consumption of the fan coil operating at the 

first speed �̅�e,fc,𝑗   is assumed. Otherwise, if the required thermal energy input at the time 

instants is lower than the one that can be acquired by the fan coil operating with the first 
speed, the consumed electrical energy is given by 

𝐸e,fc,𝑗 = 𝐸e,fc,𝑗 (3.6 ⋅ 106)2(𝐸t,z,𝑗±𝐸𝑡,fc,0)𝑇𝑑 2 13.6 𝑄𝑗cw𝑈0,𝑗,1(𝑇𝑤,𝑗𝑖𝑛 − 𝑇z,𝑖)2 13.6 𝑄𝑗𝑐𝑤+ 𝑈0,𝑗,1
, #

                            (3.6 ⋅ 106)2(𝐸t,z,𝑗 ±𝐸𝑡,fc,0) < 𝑇𝑑 2 13.6 𝑄𝑗𝑐𝑤𝑈0,𝑗,1(𝑇𝑤,𝑗𝑖𝑛 − 𝑇z,𝑖)2 13.6𝑄𝑗𝑐𝑤+ 𝑈0,𝑗,1 ,                           (3 − 27) 
where 𝐸𝑡,fc,0  is included to account for the delivered thermal energy while the fan is not 

operating. 

The electrical energy consumption covering both described modes of operation can be derived 
by employing the saturation function  

𝐸e,fc,𝑗 = �̅�e,fc,𝑗sat
( 
   3.6 ⋅ 106(𝐸𝑡,z,𝑗 ± 𝐸𝑡,fc,0)𝑇𝑑 2 13.6 𝑄𝑗𝑐𝑤𝑈0,𝑗,1(𝑇𝑤,𝑗𝑖𝑛 − 𝑇z,𝑖)2 13.6 𝑄𝑗𝑐𝑤 + 𝑈0,𝑗,1

, 0,1
) 
   , #(3 − 28)  
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where sat(𝑥, 𝑎, 𝑏) is the saturation function of input 𝑥 with parameters 𝑎 and 𝑏 as the lower 

and the upper saturation limit respectively. 

3.6 Radiator and underfloor heating model 

Dynamic equations of the radiator is given by [4] 𝑑𝑇𝑤,𝑞𝑜𝑢𝑡𝑑𝑡 = 𝑎3.6𝑄𝑞(𝑇𝑤,𝑞𝑖𝑛 −𝑇𝑤,𝑞𝑜𝑢𝑡) − 𝑏(𝑇𝑤,𝑞𝑎𝑣 −𝑇z,𝑖)𝑛𝑟,𝑞 , 𝑇𝑤,𝑞𝑜𝑢𝑡 ≥ 𝑇z,𝑖 , #(3 − 29)  

where 𝑞 ∈ 𝒬 is the index of the radiator heating unit and 𝒬 ⊆ 𝒥 is the set of all indices, 𝑄𝑞  is 

the effective flow through the radiator in a single discretisation period, 𝑇𝑤,𝑞𝑖𝑛  and 𝑇𝑤,𝑞𝑜𝑢𝑡 are the 

inlet and the outlet temperatures of the medium respectively, 𝑇𝑤,𝑞𝑎𝑣  is the average temperature 

of the medium in the radiator, parameter 𝑎 describes the heat power input from the medium, 𝑏 
and 𝑛𝑟,𝑞 ≥ 1 describe the heat power transferred to the air in the considered zone. 

The flow through the radiator/underfloor heating is changing within the time-instant along 
with the state of the valve. The effective flow through the radiator/underfloor heating 𝑄𝑞  is 

estimated as the value that ensures the delivery of the required thermal energy amount in the 
zones given the initial temperature of the radiator/underfloor heating, air temperature in the 

zones and the temperature at the inlets of the heating elements. 

Simplified thermal model of the underfloor heating is described with [4] 

𝑚𝑓ℎ𝑐𝑓ℎ𝑑𝑇𝑤,𝑔𝑜𝑢𝑡𝑑𝑡 = 𝑄𝑔3.6𝑐𝑤(𝑇𝑤,𝑔𝑖𝑛 −𝑇𝑤,𝑔𝑜𝑢𝑡)−𝑈0,𝑔(𝑇𝑤,𝑔𝑜𝑢𝑡−𝑇z,𝑖),#(3− 30)  

where 𝑔 ∈  𝒢 is the index of the underfloor heating unit and 𝒢 ⊆ 𝒥 is the set of all indices, 𝑚𝑓ℎ is the effective mass of the underfloor heating and 𝑐𝑓ℎ its specific heat capacity, 𝑈0,𝑔 is the 

heat transfer coefficient from the medium to air in the zone. 

The second term of the right-hand side in (3-30) and scaled coefficient of the same term in (3-
29) describes the heat power delivered to the zone. It is approximated by 

𝑈0,𝑞(𝑇𝑤,𝑞𝑎𝑣 − 𝑇z,𝑖)𝑛𝑟,𝑞≈ 3.6 ⋅ 106 𝐸𝑡,z,𝑞𝑇𝑑 ,𝑈0,𝑔(𝑇𝑤,𝑔𝑜𝑢𝑡− 𝑇z,𝑖) ≈ 3.6 ⋅ 106𝐸𝑡,z,𝑔𝑇𝑑 , #(3− 31)  

in the discretisation interval, where 𝐸𝑡 ,z,∙ is the required heat energy of the corresponding 

heating element in a single time interval. Thus, nonlinear differential equations (3-29)/(3-30) 

can be approximated by a linear differential equation with parameters (𝑇𝑤,∙𝑜𝑢𝑡(0),𝑄∙ ,𝐸𝑡 ,z,∙ ,𝑇𝑤,∙𝑖𝑛) 
in solution 𝑇𝑤,∙𝑜𝑢𝑡(𝑡), where ∙ denotes the general placeholder symbol. Thus, the recursion for 

the medium temperature at the outlet 𝑇𝑤,∙𝑜𝑢𝑡 can be easily derived, 

𝑇𝑤,∙𝑜𝑢𝑡(𝑘𝑇𝑑) = 𝑓∙ (𝑇𝑤,∙𝑜𝑢𝑡((𝑘− 1)𝑇𝑑),𝑄∙((𝑘− 1)𝑇𝑑),𝐸𝑡,𝑧,∙((𝑘− 1)𝑇𝑑),𝑇𝑤,∙𝑖𝑛((𝑘− 1)𝑇𝑑)) .#(3− 32)  
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The attainable thermal energy on the radiator/underfloor heating is obtained by integrating the 

thermal energy power in the discretisation interval, 

𝐸𝑡,r,𝑞 = 13.6 ⋅ 106 ∫ 𝑈0,𝑞(𝑇𝑤,𝑞𝑜𝑢𝑡−𝑇z,𝑖)𝑛𝑟,𝑞𝑑𝜏,(k+1)𝑇d
k𝑇d𝐸𝑡,fh,𝑔 = 13.6 ⋅ 106 ∫ 𝑈0,𝑔(𝑇𝑤,𝑔𝑜𝑢𝑡−𝑇z,𝑖)𝑑𝜏.(k+1)𝑇d

k𝑇d #(3 − 33)  

To allow the exact computation of the integral expression, the temperature of the medium at 
the outlet of the element is linearly interpolated, 

𝑇𝑤,∙𝑜𝑢𝑡(t) ≈ (1 − t − k𝑇d𝑇d )𝑇𝑤,∙𝑜𝑢𝑡(k𝑇d)+ t − k𝑇d𝑇d 𝑇𝑤,∙𝑜𝑢𝑡((k+ 1)𝑇d), k𝑇d ≤ t ≤ (k + 1)𝑇d . #(3 − 34)  

Employed model considers the effective flow value within the discretisation period 𝑄𝑞  which 

influences the electrical energy consumption at the hydraulic pump. Thus, the medium flow at 
the central HVAC unit is given by 

𝑄s =∑𝑄𝑞 .𝑞∈𝒬  

4. MPC formulation 

Optimisation of the medium flow and temperature is performed to achieve the minimum cost 

of energy while acquiring the required heating energy outputs to the zones.  

The cost function of the considered MPC problem is given by 𝐽 = min𝑇s,𝑄s,nom   𝐽𝑡 + 𝐽𝑒 , #(3 − 35)  

where  

 

for the heat pump the consumed thermal energy boils down to the cost of electricity, which is 

given by 

𝐽𝑡 = ∑ 𝑐e(𝑘)𝐶𝑂𝑃(𝑘) (|𝐸𝑡,nc(𝑘)|+|𝐸𝑡,l(𝑇s(𝑘), 𝑄s(𝑘))|+∑|𝐸𝑡,z,𝑗(𝑘)|𝑗∈𝒥 )𝑁−1
𝑘=0 , #(3 − 36)  

and in case of the heating substation is the thermal cost described with 
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                                  𝐽𝑡 = ∑ 𝑐ℎ(𝑘)(𝐸𝑡,nc(𝑘) + 𝐸𝑡,l(𝑇s(𝑘),𝑄s(𝑘)) +∑𝐸𝑡,z,𝑗(𝑘)𝑗∈𝒥 ).                  (3 − 37)𝑁−1
𝑘=0  

Consumed electrical energy 𝐽𝑒 in (3-36) for the HVAC system which excludes the electrical 

energy consumption for the preparation of the medium itself by the heat pumps is given by 

𝐽e = ∑ 𝑐e(𝑘)(𝐸𝑒,𝑝(𝑄s(𝑘)) +∑𝐸𝑒,fc,𝑗(𝑘)𝑗∈ℱ )𝑁−1
𝑘=0 . #(3− 38)  

Among the heating elements, only the fan coils are considered as the electricity consumers, 

with the electrical energy consumption model provided with (3-28). 

Constraints of the optimisation problem are: 

- the attainable energy constraint on the zone elements 
 |𝐸𝑡,∙,𝑗|≥ |𝐸𝑡,z,𝑗|,#(3 − 39)  

here 𝐸𝑡,∙,𝑗 is the attainable thermal energy on the 𝑗-th heating/cooling element, which is 

in case of fan coils given by 𝐸𝑡,fc,𝑗  (3-24) and in case of  radiators/underfloor heating 

given by 𝐸𝑡,r,𝑗 and 𝐸𝑡,fh,𝑗  (3-33), 

- supply medium flow 𝑄s,nom and temperature 𝑇s constraints. 

5. Simulation results 

Operation of the developed MPC controller is validated in a simulation scenario with fan coils 
and heat pump in the heating season. The considered model consists of 23 zones with overall 

29 fan coils, a controlled hydraulic pump and a heat pump. Within the MATLAB Simulink 
environment is interaction between the HVAC controller and the zone controller established. 

Zone controller receives as inputs the predictions of the medium temperature and flow from 
the HVAC controller, whereas it delivers the zone temperature predictions and required 
thermal energies in the zones to the HVAC controller. Besides, variables that also form the 

inputs for the HVAC controller are forecasted environment temperatures, non-controllable 
loads and variable electricity prices predictions in the considered horizon. Since the zone 

controller inputs depend on the HVAC controller outputs and vice versa, sequence of 
execution should be defined. Specifically, the zone controller accepts the predictions of 
temperatures and flows from the last time instant of the HVAC controller optimisation, which 

is herein included to incorporate the existing transport delay in the medium propagation 
through the building. 

Sequential linear programming is used to derive a solution to the nonlinear MPC problem 

from Section 4. In order to achieve a speed up of the optimisation process, the warm starting 
of the MP problem is achieved by employing the computed control input prediction from the 

previous time instant. Since the optimisation scheme is  iterative, the maximum number of 
iterations is in the considered scenario upper bounded with 10 000. 



Smart Building – Smart Grid – Smart City (3Smart) 
Deliverable D4.5.3 Annex 1 – Central HVAC system model predictive control 

  

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  
14 

 

 Fig. 1 depicts the pricing of electrical energy (possibly received from the microgrid-level 

MPC) and ambient air temperatures which are considered in the simulation. 

 
         (a)                                                                                     (b) 

Fig. 1:  a) Hourly electricity pricing and b) air ambient temperatures from January 21 to January 25, 

2018 

HVAC MPC controller inputs are depicted in Fig. 2, whereas on Subfigure 2-a is depicted the medium 

flow reference for the hydraulic pump and on Subfigure 2-b is depicted the commanded temperature 

of the supply medium. Imposed limits on the control variables are depicted with dashed lines.  

In the considered scenario the medium flow varies between the minimum and maximum values and 

the supply temperature has smaller variations. It is easily observed that peaks  in the supplied 

medium flow coincide with the peaks of thermal energy demand in the zones, which is accompanied 

with the noticeable increase of the supply temperature. For example, if the price for the electric 

energy is low enough, the controller prefers higher rates of flow instead of the higher medium 

temperatures, since the latter one implies smaller thermal energy losses in the pipework.  

 

      (a)       (b) 

Fig. 2: a) Nominal medium flow and b) temperatures commanded by the HVAC controller 

 

Cost of consumed thermal and electrical energy by the heating system is depicted in Fig. 3.  
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(a)                                                                                            (b) 

Fig. 3: Cost of a) thermal energy and b) electrical energy on the full prediction horizon obtained by 

solving the HVAC MPC problem 

In Figs. 4-6 are displayed consumed and attainable thermal energies in each of the zone. 

Requirement that the attainable thermal energy always surpasses the energy required by the MPC 

zone controller is respected throughout the simulation. 
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Fig. 4: Consumed (red) and attainable (blue) thermal energy in the zones 
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Fig. 5: Consumed (red) and attainable (blue) thermal energy in the zones 
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Fig. 6: Consumed (red) and attainable (blue) thermal energy in the zones 

 

6. HVAC MPC module interface 

Table 1: Input-output variables list of the heating substation/heat pump control module. 

 Source/destination 
submodule 

Variable 

Inputs Zone-level submodules - temperature predictions in the zones 𝑇z 
- predicted required thermal energy input in 

the zones 𝐸t,z 
Parameters of the heating/cooling zone elements 
model (for maximum attainable heating energy 

and electricity consumption): 

- fan coils: 𝑎fc,𝑣, 𝑏fc,𝑣, 𝑙 fc,𝑣, 𝐸e,fc,𝑗, 𝐸𝑡,fc,0 
(please refer to Section 3.5) 

- radiators: 𝑎, 𝑏,𝑛r ,𝑚r ,𝑐r,𝑈0 (please refer to 

Section 3.6) 

- underfloor heating: 𝑚fh , 𝑐fh ,𝑈0 (please 

refer to Section 3.6) 
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- measured medium outlet temperatures on 
the radiator/underfloor heating/cooling 

units 𝑇𝑤,∙𝑜𝑢𝑡 (please refer to Section 3.6) 

Central HVAC system level 
submodules 

- predicted non-controllable thermal energy 
loads 𝐸t,nc 

Hydraulic model of the plant: 
- parameters of the Q-p characteristics, 𝐶𝑄−𝑝 (please refer to Section 3.2) 

- parameters of the medium flow model 

(nominal conditions) 𝐶𝑞,𝑗, 𝑗 ∈ 𝒥 (please 

refer to Section 3.1) 

- parameters of the heat pump coefficient of 
performance 𝐶𝑂𝑃, γp (please refer to 

Section 3.4) 

- parameters of the temperature model at the 
zone element inlets 𝐶𝑇,𝑗, 𝑗 ∈ 𝒥 (please 

refer to Section 3.3) 

- parameters of the heat losses model in the 
pipework (defined with 𝐶𝑇,𝑖 and 𝐶𝑞,𝑖, 
please refer to Section 3.3)  

- parameters of the hydraulic pump model 
electricity consumption 𝑉q, 𝑝end (please 

refer to Section 3.2) 

Microgrid level submodules - electricity cost function and constraints on 

the prediction horizon 𝐽𝑀∗ (𝐸𝑒) 
Other - air ambient temperature 𝑇env  (please refer 

to Section 3.4), the medium heat capacity 𝑐𝑤 

- cost of heating energy 𝑐t 

Outputs Zone level submodules - heating cost and constraints for different 
zones on the prediction horizon 𝐽𝐻∗(𝐸𝑡,𝑧) 

Zone level submodules 
/Central HVAC system 

level submodules 

- predicted temperatures and flows of the 
supplied medium over the prediction 
horizon 𝑇s, 𝑄s,nom  or 𝑄s   

Microgrid level submodules - predicted electrical energy consumption 𝐸e of the heating/cooling system on the 

prediction horizon 

District heating system 
operator (optional) 

- predicted thermal energy consumption 𝐸𝑡 
of the heating/cooling system on the 
prediction horizon 
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7. Conclusion 

The generalised mathematical description and control problem related to the optimal 
conditioning of the heating/cooling medium is discussed herein. It serves as a basis for the 

design of the HVAC control module for the heating substation and the heating pump, by 
considering different configurations of the employed heating/cooling units. Specifically, three 
distinct heating/cooling units are considered in this study: (i) fan coils, (ii) radiators and (iii) 

underfloor heating/cooling. 

Operation of the proposed control scheme is validated first on a medium-scaled simulation 
model that includes the zone control MPC layer [4] and the HVAC MPC control layer, that 

are designed for heating of a building consisting of 23 zones with overall 29 fan coils. 
Obtained simulation results show that by the module issued supplied medium flow 𝑄s,nom  and 

medium temperature 𝑇s  ensure the exact required amount of thermal energy in the zones, 

without any excess which would result with the higher losses in the system and consequently 
with the higher operational costs. 
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Executive summary 

Integrated energy management of buildings and grids installed with the 3Smart project is on the side 

of buildings divided into three vertical levels – zone level, central HVAC system level and microgrid 

level. In each of these levels the energy management algorithms are classified into three parts – (i) 

prediction and estimation, (ii) model predictive control, and (iii) equipment interfacing -- and the 

algorithms are implemented via a sequence of modules. 

The modules are designed, commissioned and tested on different pilot buildings in the Danube 

region. 

Within this deliverable the focus is put on central HVAC system level interfacing module.  

It is presented via an interfacing table that explains what data are used by the module as inputs and 

what are the final output data. The algorithm behind is in more detail explained in the annexed 

document. 
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1 Introduction 

Within the 3Smart project the following interfacing module is designed, commissioned and tested on 

the central HVAC system level: 

HVAC.I.1 – module for interfacing flow commands to circulation pump (tested in UNIZGFER pilot 

building within 3Smart).  

In the following chapter the mentioned module is presented with its interface tables showing which 

data it uses as inputs and which data it provides as outputs to be at the disposal to other submodules 

or to be used for the circulation pump. Detailed explanations of algorithms behind the module are 

provided in the previously delivered 3Smart document D4.3.1 (related to interfacing on the central 

HVAC system level). For completeness, D4.3.1 interfacing part is further improved based on feedback 

from pilot operation and annexed to this document (Annex 1). 

Source and sink for the data used by the module is a properly structured 3Smart database. Its 

structure in the part concerned by the central HVAC system level interfacing module is provided in 

Annex 2. 

2 HVAC.I.1 module 

HVAC.I.1 module is used for interfacing flow commands to circulation pump. Within 3Smart it is 

tested in UNIZGFER pilot buildings. 

 

The module interface is presented in Table 1. 

Table 1: Input-output variables list of the heating substation/heat pump control module. 

 
Source/destination 

submodule 
Variable 

Inputs Central HVAC system level 
submodules  

 Flow measurements Qs [m
3
 h

-1
](historical 

data, minutely sampled) 
  

  HVAC.MPC module  Flow set point  Qs
*
 [m

3
 h

-1
] (set by 

HVAC.MPC module) 

Outputs HVAC.MPC module 

 Pump head (differential pressure) on the 

inlet and the outlet of the pump pp = f(Qs) 

(compute pressure such that  is followed 

by set point ) 
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Executive summary 

This document focuses on interface module between central heating/cooling system management 

and field equipment on the central HVAC level. 

Variable speed circulation pump module was developed to secure energy savings in central heating 

systems of the pilot buildings. Circulation pump was considered for two different cases (operation 

modes): Case1 - with fan coils (FCs) as zone heating/cooling devices and Case 2 - with radiators or 

floor radiant panels as zone heating/cooling devices. Mathematical equations for these cases are 

provided. 
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1 Interface module for central hydraulic pump (HVAC.I.1) 

1.1 Introduction 

Module for interfacing the computed commands towards the existing regulation systems in central 

HVAC units refers to the realization of the default temperature and flow at the exit from the central 

system to the building, where only temperature is regulated and no interference is required between 

the modules. This is due to directly forwarding the subordinate control circuit of the exit 

temperature and flow from the central HVAC system, which define module for setting the required 

pressure difference on the pump. This module was developed by UNIBGFME and it is presented in 

this document and referred to D4.1.1 and D4.3.1. Description of the parameters which the pump 

needs to manage based on model predictive control (MPC) output are explicitly stated. 

1.2 Module interface 

Theoretical background for this interface module is explained in detail in D4.3.1 for prediction and 

estimation modules and D4.1.1 and will not be described here again. Regarding to literature review 

also presented in D4.3.1, variable speed circulation pump should consider different hydraulic pump 

control modes to reduce energy consumption in the system and interfacing the computed 

commands towards the existing regulation systems. Due to the hydraulic pump operational mode the 

behavior of uncontrolled and controlled pumps will be shown. 

The operation of uncontrolled pumps 

 

Figure 1.1: The operation of uncontrolled pumps scheme 

If the valve closes, the resistance increases and the volumetric flow decreases. Hence, the plant 

characteristic becomes steeper. Due to the higher resistance in the piping network the pump needs 

to provide a higher pressure. 

With uncontrolled pumps the speed n remains constant and the operating point follows the pump 

characteristic to the left. 

The example shown below demonstrates the shifting of the operating point at part load 50 % and as 

a result, the related changes in the energy consumption of the pump. 
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Figure 1.2: Operating point and power consumption at full and part load of uncontrolled pumps 

 

The operation of controlled pumps can be carried out with: 

1. Constant pump pressure  

 

Figure 1.3: Controlled pump with constant pump pressure scheme 

At part load the pressure difference across the pump is kept constant. This can be controlled either 

electronically in the pump itself or with a pressure dependent control and a variable speed drive at 

the pump. The operating point follows the line of constant pressure horizontally to the left. 

 

The example shown below demonstrates the shifting of the operating point at part load 50 % and as 

a result, the altered energy consumption of the pump. 
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Figure 1.4: Operating point and power consumption at full and part load of constant pressure controlled pumps 

 

2. Constant pressure difference across the end of the plant 

 

 

Figure 1.5: Controlled pump with constant differential pressure scheme 

 

The pressure difference Δp0 between central plant inlet and outlet is maintained at constant value. 

There are two different ways to achieve this: 

 a measuring point at the plant outlet, connected to a pressure controller and a variable frequency 

drive (VFD) at the pump 

 an electronic control in the pump itself (“Δp variable” control) 

The operating point follows the control slope that runs towards Δp0 near V̇  = 0 m3/h 

The example shown below demonstrates the shifting of the operating point at part load 50% and as a 

result, the related changes in the energy consumption of the pump. 
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Figure 1.6: Operating point and power consumption at full and part load of constant differential pressure controlled pumps 

The plant characteristic is steeper at part load (50 %). Due to the reduced volumetric flow the 

resistance in the plant is reduced as well. The controlling across the end of a plant ensures that the 

necessary differential pressure there is still maintained. 

With a controlled pump with the measuring point at the end, the energy consumption of the pump is 

even further reduced (D4.3.1, prediction and estimation modules). 

 

Energy savings with controlled pumps 

 

Plants with variable volume flows, provide significant energy savings. The selection of the control 

system depends on the situation on site (distances, investments, etc.). As shown in the chart below, 

variable speed pumps consume less power. Thus, energy and costs can be saved. A pump with 

constant differential pressure across the end of the plant is more efficient than a controlled pump 

with a constant pump pressure. 

The chart below shows the saving capacity based on a data sheet of a pump. 
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Figure 1.7: Operating point and power consumption for controlled pumps 

Operating points and power consumption in comparison 

a:   operating point, design 

b:   operating point, part load, uncontrolled 

c:   operating point, part load, controlled Δppump  

d:   operating point, part load, controlled Δpend  

A:   power consumption, design 

B:   power consumption, part load, uncontrolled 

C:  power consumption, part load, controlled Δppump 

D:  power consumption, part load, controlled Δpend  

  

According to prediction and estimation module defined in D4.3.1, constant pressure difference 

across the plant is selected as a pump control strategy. Detailed explanation for the selected control 

mode is presented in the following figure (1.8) and summary of the necessary equations are 

provided. 
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Figure 1.8: Pump diagram  

Where following annotations are used:  

 ,s nomQ  , [m
3
/h] – volume  flow at nominal working regime 

,p nomp , [m] – differential pressure at nominal working regime. 

nomn , rpm – pump rpm at nominal working regime. 

1 2, ,...p p ,[m] – differential pressure on the pump in the operational mode 

1 2, ,...s sQ Q , [m
3
/h] – reduced volume flow through the system caused by MPC output (change 

temperature) 

endp ,[m] – differential pressure by theoretical case measured on the “last” element on the system. 

 

In Figure 1.8, point A represents a pump working point at nominal power with maximum flow 

through radiators/floor heating elements. Point B considers theoretical pump operating point when 

all radiators/floor heating elements are closed and the flow through the pump is equal 0. The 

operational modes of the pump due to flow reduction by exclusion of specific radiator or floor 

heating element from the system are presented by points between. According to MPC output 

(according to D4.3.1b – MPC part) setting the differential pressure on the variable speed pump outlet 

should be defined by the combining the equations for the head if the pump in this control mode and 

with consideration of the pressure which are provided in D4.3.1 prediction and estimation modules.  

To define nonlinear variable speed pump model for this case the equation for the line through points 

A and B is determined by 
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,

,

( ) s
p end p nom end

s nom

Q
p p p p

Q
     …..(1.1) 

 

Equation 1.1 defines the required pressure difference on the VFD circulation pump based on the exit 

temperature and flow from the central HVAC system. 

 

Possible cases: 

1. All radiators are open: 

,s s nom nomQ Q p p    …..(1.2) 

 

2. Radiator no.1 is closed:  

,1

,1 1

,

( )
s

s s end nom end

s nom

Q
Q Q p p p p

Q
       …..(1.3) 

3. Radiators no.1 and no.2 are closed:  

,2

,2 2

,

( )
s

s s end nom end

s nom

Q
Q Q p p p p

Q
       …..(1.4) 

4. All radiators are closed (theoretical case):  

0s endQ p p   …..(1.5) 

 

Where following annotations are used: 

sQ  , [m3/h] – required pump flow provided by MPC output 

,s nomQ , [m3/h] – nominal pump flow  

,p nomp , [Pa] – nominal differential pressure measured on pump inlet/outlet 

endp , [Pa] – differential pressure by theoretical case measured on the “last” element on the system. 

 

4.3.4 HVAC.I.1 model parameters 

 

HVAC.I.1 interface model according to prediction and estimation model is also considered in two 

configurations: 

• Case a - static hydraulic situation with fan coils 

• Case b - configuration with radiators or floor heating/cooling 
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For Case a: 

INPUT  FORMAT 

3m /hsQ     Measurement of flow Historical data, minutely 

sampled 

* 3m /hsQ     Flow Set point  Set by HVAC.MPC module 

 

OUTPUT  FORMAT 

 p sp f Q   Differential pressure on the 

inlet and the outlet of the 

pump  

Compute pressure such that 

sQ  is followed by set point 
*

sQ  

 

 

For Case b: 

INPUT  FORMAT 

3m /hsQ     Measurement of flow Historical data, minutely 

sampled 

 

OUTPUT  FORMAT 

 , ,, , ,p s s nom p nom endp f Q Q p p  Differential pressure on the 

inlet and the outlet of the 

pump  

compute pressure such that (

,s pQ p  ) is on the required 

line determined by ( 0, endp  ) 

and ( , ,,s nom p nomQ p  ) 

 

 

Application of the VFD hydraulic pump module as a part of the overall central HVAC module design 

on particular test-sites should consider the following: 

 For selected circulation pump from all test-sites should be provided pump characteristics 

efficiency vs flow ( ( )p sf Q  );  

 output for the hydraulic pump submodule will be parameters for pump electricity consumption 

for different operating regimes and for different heating/cooling element configurations. 

 Additional demands for input variables which will be used in hydraulic pump submodule (i.e. 

parameters which should be measured on particular test-site) are pump flow and differential 

pressure on the pump (
,s nomQ ; nomp ) at nominal regime. For radiators/ground floor heating 

systems, input variables are differential pressure on the last element or differential pressure on 

the pump when all the elements were closed ( ( 0)end sp Q  ).  
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Executive summary 

Integrated energy management of buildings and grids installed with the 3Smart project is on the side 

of buildings divided into three vertical levels – zone level, central HVAC system level and microgrid 

level. In each of these levels the energy management algorithms are classified into three parts – (i) 

prediction and estimation, (ii) model predictive control, and (iii) equipment interfacing -- and the 

algorithms are implemented via a sequence of submodules. 

The submodules are designed, commissioned and tested on different pilot buildings in the Danube 

region. 

Within this deliverable the focus is put on microgrid level prediction and estimation submodules.  

Each submodule is presented via an interfacing table that explains what data are used by the 

submodules as inputs and what are the final output data. The algorithms behind are in more detail 

explained in the annexed document. 
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1 Introduction 

Within the 3Smart project the following estimation and prediction submodules are designed, 

commissioned and tested on the microgrid level: 

M.PE.1 – submodule for estimation of a battery system model that relates charging and discharging 

energies of the system to state of charge of the battery (tested in UNIZGFER, HEP, STREM retirement 

and care centre and EPHZHB pilot buildings within 3Smart);  

M.PE.2 -- submodule for estimation of battery state of charge (tested in UNIZGFER, HEP, STREM 

retirement and care centre and EPHZHB pilot buildings within 3Smart); 

M.PE.3 -- submodule for estimation of a prediction model for photovoltaic system production in off-

line operation and for prediction of a photovoltaic system production in on-line operation (tested in 

UNIZGFER, HEP, IDRIJA, STREM retirement and care centre, EPHZHB and EON pilot buildings within 

3Smart); 

M.PE.4 – submodule for estimation of a prediction model for non-controllable microgrid-relevant 

energy consumption in off-line operation and for prediction of non-controllable microgrid-relevant 

energy consumption in on-line operation (tested in UNIZGFER, HEP, IDRIJA school and sports centre 

buildings, STREM school, STREM retirement and care centre, EPHZHB and EON pilot buildings within 

3Smart); 

M.PE.5 – submodule for estimation of a domestic hot water tank model that relates charging and 

discharging heat to the temperature of the water in the tank (tested in IDRIJA school and sports 

centre pilot buildings within 3Smart); 

M.PE.6 – submodule for estimation of heating/cooling medium buffer tank model that relates 

charging and discharging heat to the temperature of the medium in the tank (tested in EPHZHB and 

EON pilot buildings within 3Smart); 

In the following chapters the mentioned submodules are presented with their interface tables 

showing which data they use as inputs and which data they provide as outputs to be at the disposal 

to other submodules. Detailed explanations of algorithms behind each of the submodules are 

provided in the previously delivered 3Smart document D4.2.1 (related to prediction and estimation) 

which is inherited here as Annex 1 and additionally improved based on feedback from pilots. 

Source and sink for the data used by submodules is a properly structured 3Smart database. Its 

structure in the part concerned by the microgrid level prediction and estimation submodules is 

provided in Annex 2. 

2 M.PE.1 submodule 

Z.PE.1 submodule is used for estimation of a battery system model that relates charging and 

discharging energies of the system to state of charge of the battery. Within 3Smart it is tested in 

UNIZGFER, HEP, STREM retirement and care centre and EPHZHB pilot buildings. 
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The submodule interface is defined in Table 2.1 and Table 2.2.  

Table 2.1: Inputs of the M.PE.1 submodule 

Variable name Variable annotation Variable description 

Historical profile of measured 

battery currents 
Ibatt 

Historical profile of battery 

average currents measured by 

the battery pack controller 

Historical profile of measured 

battery and battery cells 

voltages 

Ubatt 

Historical profile of battery and 

battery cells voltages 

measured by the battery pack 

controller 

Historical profile of measured 

battery cells temperatures 
Tbatt 

Historical profile of battery 

cells temperatures measured 

by the battery pack controller 

Historical profile of measured 

power for converter AC side 

(before the isolation 

transformer) 

PconvAC 

Historical profile of power for 

converter AC side measured by 

the power converter 

 

Table 2.2: Outputs of the M.PE.1 submodule 

Variable name Variable annotation Variable description 

Battery model θbatt 
Needed for the M.PE.2, MPC 

module on the microgrid level 

3 M.PE.2 submodule 

Z.PE.2 submodule is used for estimation of battery state of charge. Within 3Smart it is tested in 

UNIZGFER, HEP, STREM retirement and care centre and EPHZHB pilot buildings. 

The submodule interface is defined in Table 3.1 and Table 3.2. 

Table 3.1: Inputs of the M.PE.2 submodule 

Variable name Variable annotation Variable description 

Historical profile of measured 

battery currents 
Ibatt 

Historical profile of battery 

average currents measured by 

the battery pack controller 

Historical profile of measured 

battery and battery cells 

voltages 

Ubatt 

Historical profile of battery and 

battery cells voltages 

measured by the battery pack 

controller 

Historical profile of SoC from 

battery pack 
SoC 

Historical profile of calculated 

SoC calculated by the battery 

pack controller 
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Table 3.2: Outputs of the M.PE.2 submodule 

Variable name Variable annotation Variable description 

Current state of charge 

estimate in energy 
SoCE 

Needed for the MPC module 

on the microgrid level 

 

4 M.PE.3 submodule 

M.PE.3 submodule is used for estimation of a prediction model for photovoltaic system production in 

off-line operation and for prediction of a photovoltaic system production in on-line operation. Within 

3Smart it is tested in UNIZG-FER, HEP, IDRIJA, STREM retirement and care centre, EPHZHB and EON 

pilot buildings. 

The submodule interface is defined in Table 4.1 and Table 4.2 

Table 4.1: Required inputs for the photovoltaic array production prediction submodule. 

Variable name Variable annotation Variable description 

Photovoltaic array power 

meters data 
𝐸pv  

Photovoltaic array energy 

production measured directly 

on the array power meter 

Weather measurements 

UNIZG-FER pilot site: 𝑇env, 𝐼diffℎ , 𝐼dirn  

Remaining pilot sites: 𝑇env, 𝐼gloℎ , 𝐼glot  

Measured weather variables: 

temperature, diffuse 

horizontal and direct normal 

irradiance (UNIZG-FER site), 

global horizontal and tilted 

global irradiance (remaining 

sites). 

Weather predictions (𝑇env)N, (𝐼dirn )N, (𝐼diffh )N 

Forecasted weather variables 

(temperature, direct normal 

and diffuse horizontal 

irradiance). 

Time indicators 𝜏 

Variables representing time of 

the day, time of the week and 

day of the year. Calculated 

from current and historical 

datetimes. 

 

Table 4.2: Outputs of the photovoltaic array production prediction submodule. 

Variable name Variable annotation Variable description 

Prediction model parameters 

(for off-line operation of the 

submodule) 

𝜃𝑃𝑉  
Needed for on-line operation 

of the submodule 

Predicted profile of the 

photovoltaic array energy 

production (for on-line 

operation of the submodule) 

(𝐸pv)N 
Needed for the MPC module 

on the microgrid level 
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5 M.PE.4 submodule 

M.PE.4 is a submodule used for estimation of a prediction model for non-controllable microgrid-

relevant energy consumption in off-line operation and for prediction of non-controllable microgrid-

relevant energy consumption in on-line operation. Within 3Smart it is tested in UNIZGFER, HEP, 

IDRIJA school and sports centre buildings, STREM school, STREM retirement and care centre, EPHZHB 

and EON pilot buildings. 

The module interface is provided with the following Table 5.1 and Table 5.2. 

Table 5.1: Required inputs for the microgrid level non-controllable consumption prediction submodule. 

Variable name Variable annotation Variable description 

Historical profile of the non-

controllable energy 

consumption on the microgrid 

level 

𝐸𝑒,nc 𝐸𝑡,nc 

Non-controllable energy 

consumption on the microgrid 

level, electrical energy for all 

pilot sites except Idrija pilot 

sites where both electrical and 

thermal energy on the 

microgrid level are considered 

Weather measurements 

UNIZG-FER pilot site: 𝑇env, 𝐼diffℎ , 𝐼dirn  

Remaining pilot sites: 𝑇env, 𝐼gloℎ , 𝐼glot  

Measured weather variables:  

temperature, diffuse 

horizontal and direct normal 

irradiance (UNIZG-FER site),  

global horizontal and tilted 

global irradiance (remaining 

sites). 

Weather predictions (𝑇env)N, (𝐼dirn )N, (𝐼diffh )N 

Forecasted weather variables 

(temperature, direct normal 

and diffuse horizontal 

irradiance). 

Time indicators 𝜏 

Variables representing time of 

the day, time of the week and 

day of the year. Calculated 

from current and historical 

datetimes. 

 

Table 5.2: Outputs of the non-controllable consumption prediction submodule. 

Variable name Variable annotation Variable description 

Prediction model parameters 

(for off-line operation of the 

submodule) 

𝜃𝑢𝑔 
Needed for on-line operation 

of the submodule. 

Predicted profile of the non-

controllable electricity 

consumption, predicted 

profile of the non-controllable 

thermal load (for on-line 

operation of the submodule) 

(𝐸𝑒,𝑛𝑐)N (𝐸𝑡,𝑛𝑐)N 

Needed for the MPC module 

on the microgrid level 
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6 M.PE.5 submodule 

M.PE.5 is a submodule used for estimation of a domestic hot water tank model that relates charging 

and discharging heat to the temperature of the water in the tank. Within 3Smart it is tested in IDRIJA 

school and sports centre pilot buildings. 

The submodule interface is defined in the following tables (Table 6.1, Table 6.2). 

Table 6.1: Required inputs for the M.PE.5 submodule 

Variable name Variable annotation Variable description 

Electric heaters data heater_data Electric heaters technical data 

Heat exchangers data exchanger_data Heat exchangers technical data 

Tank temperatures dhw_temperatures 
Temperatures of medium in 

tank, at diferent positions 

Environment temperature temperature_env Room air temperature 

Environment temperature- 

history 
temperature_env_hist 

Room air temperature, 

historical data 

Imported heat dhw_heat_import 

Heat measured by heat meter 

on supply pipe from district 

heating. 

Imported heat-history dhw_heat_import _hist 

Heat measured by heat meter 

on supply pipe from district 

heating, historical data. 

Imported electric energy dhw_el_import 
Electricity consumed by 

electric heaters 

Imported electric energy – history dhw_el_import _hist 
Electricity consumed by 

electric heaters, historical data 

Flow measurement on exiting 

pipe 
flow_export 

Flow measured on exiting pipe. 

Exported energy is calculated 

from flow and temepratures. 

Flow measurement on exiting 

pipe - history 
flow_export _hist 

Flow measured on exiting pipe, 

historical data. 

 

Table 6.2: Outputs of the M.PE.5 submodule 

Variable name Variable annotation Variable description 

DHW tank state dhw_state_pred 
Current and predicted state of 

energy stored in tank. 

 

7 M.PE.6 submodule 

M.PE.6 is a submodule for estimation of heating/cooling medium buffer tank model that relates 

charging and discharging heat to the temperature of the medium in the tank. Within 3Smart it is 

tested in EPHZHB and EON pilot buildings. 

The module input and output data are provided within the following tables. 
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Table 7.1: Inputs of the M.PE.6 submodule 

Variable name Variable annotation Variable description 

Historical controllable load 

measured state 

Theatstorage 
Historical profile of measured 

temperature of the buffer tank 

Historical controllable load 

energy input 

Ein 

Historical profile of measured 

energy input into the buffer 

tank measured by electricity 

meters 

Historical controllable load 

energy output 

Eout 

Historical profile of measured 

energy output from the buffer 

tank measured by calorimeters 

Room temperature Tenv 

Historical profile of measured 

room temperature (room 

where the tank is located) 

Parameter of the COP model 

of the chiller (if relevant) 
COP 

Calculated parameters of the 

chiller from HVAC.PE.1 

 

Table 7.2: Outputs of the M.PE.6 submodule 

Variable name Variable annotation Variable description 

Simplified model of the 

controllable load 

θl 

Needed for the MPC module 

on the microgrid level 
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Annex 1 – Open software module for microgrid level consumption 

management – Estimation and prediction submodules 
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Annex 2 -- 3Smart database organization for open software module 

for the microgrid level management – Estimation and prediction 

submodules 

M.PE.3.  

Input data database structure: 

 

Figure 1. Current and historical photovoltaic array production data database structure.  
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Figure 2. Weather measurements data database structure. 
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Figure 3. Weather forecast data database structure. 

Output data database structure: 

 

Figure 4. Current and historical photovoltaic array production predictions data database tables. 
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M.PE.4.  

Input data database structure: 

 

Figure 5. Current and historical microgrid level electrical non-controllable consumption data database structure (all pilots).  

 

Figure 6. Current and historical microgrid level thermal non-controllable consumption data database structure (Idrija pilots).  
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Figure 7. Weather measurements data database structure. 
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Figure 8. Weather forecast data database structure. 

Output data database structure: 

 

Figure 9. Current and historical microgrid level non-controllable consumption predictions data database tables. 
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M.PE.5.  

Input data database structure: 

 

Output data database structure: 
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Executive summary 

The main objective of the project Smart Building – Smart Grid – Smart City (3Smart) funded 

within the Interreg Danube Transnational Programme is to provide technology and 

legislative setup for cross-spanning energy management of buildings and utility grids, 

foremost electricity distribution grids. 

One of the main pillars in reaching that objective is to derive a modular energy management 

tool for buildings, which can be easily adapted to different configurations of the building and 

adds upon the existing building automation system. This “3Smart” energy management 

concept consists of three modules put in the hierarchical organization: zones comfort 

module, central HVAC module and microgrid energy flows module. Further on, each of the 

modules incorporate three different submodules: prediction and estimation, optimal control 

and interfaces to the equipment. Each of the considered pilot locations has specific 

configuration where all modules are not necessarily present. High level of flexibility is 

therefore targeted to achieve easy modifications for particular pilots. 

This annex to D4.5.3 describes the prediction and estimation submodules of the microgrid 

energy flows module. The module is positioned as the highest in the hierarchy of the 

building-side EMS and as a connection to the electricity distribution grid and energy 

markets. The core of the submodule is the model predictive control algorithm based on 

linear program. It minimises the cost of building operation in various time-variable market 

conditions known in advance. It manages energy storages operation, controllable loads and 

controllable energy production while respecting the system limitations and degradation in 

time. Non-controllable renewable energy sources production and non-controllable building 

consumption is also taken into account based on weather forecast data and historical 

measurements data. The outputs are consumption prices sent towards lower hierarchy 

modules as a basis for overall building consumption adjustment to current market 

conditions. 

In this document prediction and estimation submodules are presented. These modules are 

essential for providing input information for the MPC submodule of the microgrid-level 

module. 
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Introduction 

One of the main focuses of the 3Smart project is to derive a modular energy management 

tool for buildings that can be easily adapted to different configurations of the building and 

adds upon the existing building automation system. This “3Smart” energy management 

concept consists of three modules put in the hierarchical organization: zones comfort 

module, central HVAC module and microgrid energy flows module, as shown in Fig. 1. 

Further on, each of the modules incorporate three different submodules: prediction and 

estimation, optimal control and interfaces to the equipment (Fig. 2). Each of the considered 

pilot locations has specific configuration where all modules are not necessarily present. High 

level of flexibility is therefore targeted to achieve easy modifications for particular pilots. 

 

Figure 1: Functional diagram of the 3Smart EMS hierarchy on the building side. 
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Figure 2: Modules schematics of the 3Smart EMS concept. 

 

This document contains the following submodules: 

 Submodule for identification of battery parameters 

 Submodule for estimation of battery state of charge 

 Submodule for prediction of the total non-controllable energy consumption 

on the microgrid level 

 Submodule for prediction of the photovoltaic array production 

 Submodule for estimation of the domestic hot water tank model 

 Submodule for estimation of the heat buffer tank model 
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1  Submodule for identification of battery parameters 

(M.PE.1) 

1.1 Theory 

Battery Management System (BMS) 

An effective BMS using the lithium-ion battery is compulsory so that battery can operate 

safely and reliably, prevent any physical damages, and handle thermal degradation and cell 

unbalancing. Moreover, different states of the battery, such as the SoC, state of health (SOH) 

can be assessed through an efficient battery management system, which can sense 

temperature, measure voltage and current, regulate safety alarm to avoid any 

overcharging/over discharging. Furthermore a BMS is essential for controlling and updating 

data, detecting faults, equalizing battery voltage that are the important factors for achieving 

a good accuracy of SoC and SoH. The components of BMS can be categorized into the 

hardware and software structure perspective, as shown in Figure 1.1 [1]. 

 

Figure 1.1: The components of BMS [1] 

The function of estimating battery parameters and battery states will be handled by 3Smart 

software modules. 

Equivalent circuit model of batteries 

Battery models are typically classified as one of the following: electrochemical models, 

behavioral models or equivalent circuit-based models. 

Electrochemical models are based on the battery physical construction and chemistry. While 

these models can be extremely accurate in describing the battery behavior, usually they are 

computationally time-consuming and not suitable for real-time control oriented 
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applications. Different from the electrochemical approach, the equivalent circuit model 

describes the effect of the chemical processes of major interest using electrical circuit 

elements, such as voltage source, resistors and capacitors to approximate the battery 

dynamics [2]. 

Behavioral models are empirical and utilize functions to model battery dynamics. There are 

several models, namely: the combined model, the simple model, the zero-state hysteresis 

model, the one-state hysteresis model and the enhanced self-correcting model. These 

models can be easily optimized and they account for ohmic losses, hysteresis and 

polarization time constants [3]. 

The mostly used battery models are the equivalent circuit-based models, because of its 

simplicity and satisfactory performance [2].  

Basic questions for high decision making (MPC): 

 How much energy is available or can be stored? 

 How much power can the battery system provide or absorb? 

These parameters cannot be measured, they must be estimated from available data. The 

estimation process is shown in Figure 1.2 below. In Figure 1.2 V represent the voltage, I 

represent the current and T represent the temperature of each cell. From this set of data the 

estimator is able to determine the capacity (Q), the SoC value (SoC) and the internal 

resistance of each cell (R). After that it is possible to calculate with the whole battery pack. 

For the estimation of energy and power we must determine: 

 Battery Capacity 

 SoC: State of Charge 

 Resistances and other battery model parameters 

 

Figure 1.2: The process of the battery pack’s parameters calculation [4] 

State-of-charge (SoC) z(t) definition 

 𝑧(𝑡) = 𝑧(0) − 1𝑄 ∫ 𝜂𝑖(𝜏)𝑑𝜏𝑡0  (1-1) 

where Q is total capacity of the battery in As. The current is positive on discharge and 

negative on charge. The coulombic efficiency is approximately one. It is one for discharge, 

and smaller than one for charge. The total capacity is proportional to the number of 

positions capable of storing Li in the electrode structure. It is not a function of temperature, 

charging rate, etc.  
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Simplified cell model 

 
Figure 1.3: Simplified cell model [4] 

 𝑣(𝑡) = 𝑂𝐶𝑉(𝑧(𝑡)) − 𝑖(𝑡)𝑅 (1-2)

 𝑖(𝑡) =  𝑂𝐶𝑉(𝑧(𝑡))−𝑣(𝑡)𝑅  (1-3) 

Here v is voltage, i current, OCV is open circuit voltage. Cell resistance can depend on SoC, 

temperature. It must be determined by a cell test and tabulated. 

The determination of the OCV curve and the internal resistance is a difficult task, which is 

usually done off-line. Most of the proposed methods in the literature requires a long and 

tedious procedure involving charging and discharging pulse sequences followed by long 

resting periods. Higher sampling rates than the available one minute are required to capture 

the instantaneous change of voltage after the current pulse.  

Under the present conditions, for online determination of the OCV curve a quasi-static 

approach will be applied. The battery is discharged from a fully charged initial state, 

discharged with a constant low current (0.02C) and then charged with the same low current 

[figure]. The average of the charge and discharge curves provides the OCV curve, and the 

difference is used to determine the internal resistance. 
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Figure 1.4: Charge and discharge voltages under constant current condition 

Power estimate:  We set a minimal and maximal terminal voltage as the limit of power input 

and output. Charge and discharge power is given as positive quantities. For a single cell: 

 𝑃𝑑𝑖𝑠 = 𝑣(𝑡)𝑖(𝑡) = 𝑣𝑚𝑖𝑛 𝑂𝐶𝑉(𝑧(𝑡))−𝑣𝑚𝑖𝑛𝑅𝑑𝑖𝑠,∆𝑇  (1-4) 

 𝑃𝑐ℎ𝑔 = 𝑣𝑚𝑎𝑥 𝑣𝑚𝑎𝑥−𝑂𝐶𝑉(𝑧(𝑡))𝑅𝑐ℎ𝑔,∆𝑇  (1-5) 

The total cell energy is equal to: 

 𝐸(𝑡) = 𝑄 ∫ 𝑂𝐶𝑉(𝜉)𝑑𝜉 ≈ 𝑄𝑉𝑛𝑜𝑚∆𝑧𝑧(𝑡)𝑧𝑚𝑖𝑛  (1-6) 

In equation (1-6) E is the cell’s actual stored energy and Q is the cell total capacity in ampere 

seconds (Coulombs) [4]. 

1. The pack power can be estimated as the lowest cell power multiplied by the number of 

cells.  

2. Pack energy is calculated from the lowest cell discharge capacity, calculating the 

corresponding state of charge for all cells: 

 𝑧𝑙𝑜𝑤,𝑘 = 𝑧𝑘(𝑡) − 𝐴ℎ 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑𝑄𝑘  (1-7) 

 𝐸𝑝𝑎𝑐𝑘(𝑡) = ∑ 𝑄𝑘 ∫ 𝑂𝐶𝑉(𝜉)𝑑𝜉𝑧𝑘(𝑡)𝑧𝑙𝑜𝑤,𝑘𝑘  (1-8) 
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State-of-Health (SOH) estimation 

Change of the parameters with time and number of cycles results in capacity loss, internal 

resistance change and increase of imbalance between cells. Periodic capacity measurement 

by discharging a fully charged battery can be used to determine the actual capacity (C=Q).  

 𝑆𝑜𝐻 = 𝐶𝐶𝑛𝑜𝑚 (1-9) 

In equation (1-9) C is the maximum capacity of the battery in its current state and Cnom is the 

initial nominal capacity of the fresh battery. Both values are in Ah.  

From the State of health (SoH) estimation, the remaining useful lifetime (RUL) can be 

extrapolated as it is shown in Figure 1.5.  

 
Figure 1.5:  SoH and RUL estimation sequence [5] 

Discharge curves of the fully charged battery pack can be used to determine capacity fading 

(see Figure 1.6). 

 
Figure 1.6: Reference discharge voltage profiles for determination of cell capacity changes over the course of 

battery testing [5] 

In the minimalistic approach the battery pack is fully charged at regular intervals to 

determine the capacity. 

1.2 Inputs 

 Historical profile of measured battery currents 

o  [Ibatt] = A 
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 Historical profile of measured battery and battery cells voltages 

o  [Ubatt] = V 

 Historical profile of measured battery cells temperatures 

o  [Tbatt] = °C 

 Historical profile of measured energy for converter AC side (before the isolation 

transformer) 

o  [EconvAC] = kWh 

Resolution: 1/min 

Ibatt, Ubatt, Tbatt should be average for the time period. 

EconvAC should be a sum for time period between the sampling instants, ending at the time 

stamp. 

1.3 Outputs 

 Battery/batteries model, θbatt 

Parameters of the battery/batteries model: 

o [Estored, max] = kWh – constant 

 Maximum possible/allowed energy content of the battery system 

o [Estored, min] = kWh – constant 

 Minimum possible/allowed energy content of the battery system 

(generally 0) 

o [Pout, max] = kW – constant 

 Maximum allowed output power of the battery system 

o [Pin, max] = kW – continuous function of ESoC provided in a form of a polytope 

(conservative approximation) 

 Maximum allowed input power of the battery system 

o ηBatSys – dimensionless, constant 

 Energy efficiency of the battery system (battery and converter 

together) 

1.4 Internal parameters 

 Nominal battery parameters 

o Original battery cell capacity in Ah 

o Number of battery cells 
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o Discharging cut-off voltage 

o Charging cut-off voltage 

o Recommended charging - discharging current 

o Maximum short-time discharging current 

o Battery type: {LiFePO4, salt-water, lead-acid} 

 Current battery pack capacity 

o [Cbatt_pack] = Ah 

 OCV curve for battery cells 

o voltage vs. capacity 

 Internal resistance of battery cells 

o [Rint] = Ω 

 Energy efficiency of battery system 

o ηBattery 

 Energy efficiency of power converter 

o ηPowerConverter 

1.5 Frequency of submodule calls 

The submodule is envisioned to be called monthly. 

1.6 Algorithm 

The following steps need to be performed: 

 Initial parameter setup 

 Calibration cycle 

Initial parameter setup 

It should be done manually. Nominal battery parameters should have a default value, based 

on the datasheet. These values do not change during the lifetime of the system. 

Calibration cycle 

During a calibration cycle the following measurements are being performed: 

 OCV measurement 

 Internal resistance measurement 

 Recalculation of maximum stored energy 

 Recalculation of battery system efficiency  

It should be done once a month. Weekends might be more suitable. 

Steps: 

1. Charge the battery to full capacity. 
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2. Fully discharge the battery with relatively low current and record the voltage values 

for each cell. Relative low current should be 0.05C. With this current the 

measurement takes approx. 20 hours. 

3. Fully charge the battery with relatively low current and record the voltage values for 

each cell. Relative low current should be 0.05C. With this current the measurement 

takes approx. 20 hours. 

The battery voltages are recorded during the full discharge/charge cycle with low current.  

The actual battery capacity is calculated by coulomb counting during the discharging 

processes.  The state of charge is calculated based on the actual capacity and the Coulomb 

counting formula for charging and discharging stages. The average of the battery voltages at 

a given state of charge provides the OCV curve. The difference of the voltages divided by the 

double of the current provides the resistivity value.  

The OCV curves is fitted with a polynomial function. This polynomial function together with 

its derivative and integral are used by the SoC estimation algorithm.  

For the internal resistance a constant value is used.  It is determined based on the average in 

the middle region of the curve.  

The energy released during the discharge cycle gives maximum stored energy value. This 

value is measured on the AC side of the converter.  

The efficiency of the battery system is calculated as the ratio of the ohmic loss to the stored 

energy. This value depends on the actual current. 

Battery system efficiency consists of two components: 

 ηBatSys = ηBattery · ηPowerConverter (1-10) 

Each will be handled as constant using worst value occurred during the last month. The 

values measured during the calibration cycle are taken into account. 

During the test sequence the battery system is turned offline (both Estored, max and Estored, min 

are set to zero). The time interval for the test is recorded in the database, and the measured 

values are copied to a table which always contains the latest calibration cycle. 

2 Submodule for estimation of battery state of charge 

(M.PE.2)  

2.1 Theory 

Definition and classification of SoC estimation 

The SoC is one of the most important variables for batteries, but its definition presents many 

different issues. In general, the SoC of a battery is defined as the ratio of its current charge 
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(Q(t)) to the actual maximum charge (Qact). The starting nominal maximum charge is given by 

the manufacturer and represents the maximum amount of charge that can be stored in the 

battery. The actual charge is determined during the battery parameter estimation. The SoC 

can be defined as follows [6]: 

 𝑆𝑜𝐶 (𝑡) =  𝑄(𝑡)𝑄𝑎𝑐𝑡 (2-1) 

Assuming that the initial value SoC (t0) is known, instantaneous SoC is generally evaluated by 

integrating the battery current over time, as shown in the following equation: 

 𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡0) + ∫ 𝐼𝑏𝑎𝑡𝑑𝜏𝑡0+𝜏𝑡0 𝑄𝑎𝑐𝑡  × 100% (2-2) 

where SoC is the current SoC value, Ibat is the battery current value and the Qact is the actual 

charge [7]. 

The various mathematical methods of estimation are classified according to methodology. 

The classification of these SoC estimation methods is different in the various literatures. 

However, some literatures allow a division into the following four categories. 

Direct measurement: these methods use physical battery properties, such as the voltage and 

impedance of the battery. 

Book-keeping estimation: these methods use charging/discharging current as the input and 

integrated the charging/discharging current over time to calculate the SoC 

Adaptive systems: the adaptive systems are self-designed and can automatically adjust the 

SoC for different charging/discharging conditions. Various new adaptive systems for SoC 

estimation have been developed. 

Hybrid methods: the hybrid models benefit from the advantages of each SoC estimation 

method and allow a globally optimal estimation performance. The literature shows that the 

hybrid methods generally produce good estimation of SoC, compared to individual methods. 

The table presents the specific SoC estimation methods in view of the methodology. The 

applications of specific SoC estimation methods in battery management systems are 

consequentially different [6]. 

 

Categories Estimation methods 

Direct measurement 

Open circuit voltage method 

Terminal voltage method 

Impedance method 

Impedance spectroscopy method 

Book-keeping estimation 
Coulomb counting method 

Modified Coulomb counting method 

Adaptive systems Back propagation (BP) neural network 
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Table 2.1: List of the methods for SoC estimation [6] 

  

Coulomb Counting method 

The estimation of SoC of a Li-Ion battery in this method is based on monitoring both the 

voltage Vbat and the current Ibat. The operation mode of the battery is recognized by the 

direction of current through the battery system. 

The information needed to carry monitoring are the measurement of the battery voltage, 

the current flowing through it and the operating temperature. Coulomb counter ∆Q is used 

to track the SoC when the battery is charged or discharged.  

The amount of charges ∆Q in an operating period τ is obtained by a temporal integration of 

the measured charging/discharging current Ibat like expressed in the following equation: 

 ∆𝑄 = −∫ 𝐼𝑏𝑎𝑡𝑑𝑡𝑡+𝜏𝑡  (2-3) 

The variance ∆Q that will be used in the following equations is negative if the battery is in 

discharge, positive if in charge.  

Charging Mode 

In this mode, the coulomb counter is presented by Qgained as expressed in the following 

equation which represents the quantity of charges accumulated during τ. 

 𝑄𝑔𝑎𝑖𝑛𝑒𝑑(𝑡 + 𝜏) =  𝑄𝑔𝑎𝑖𝑛𝑒𝑑(𝑡) + ∆𝑄 (2-4) 

So the variation of the state of charge gained in this same operating period is obtained by 

the relation: 

 ∆𝑆𝑜𝐶 (𝑡 + 𝜏) =  𝑄𝑔𝑎𝑖𝑛𝑒𝑑(𝑡+𝜏)𝑄𝑟𝑎𝑡𝑒𝑑 × 100% (2-5) 

By cumulating the previous state of charge indication and the obtained one can have the 

instantaneous value of SoC: 

 𝑆𝑜𝐶 (𝑡 + 𝜏) = 𝑆𝑜𝐶 (𝑡) + ∆𝑆𝑜𝐶 (𝑡 + 𝜏) (2-6) 

 

Radial basis function (RBF) neural network 

Support vector machine 

Fuzzy neural network 

Hybrid methods 

Coulomb counting and OCV combination 

Coulomb counting and Extended Kalman Filter 

combination 

Per-unit system and Extended Kalman Filter 

(EKF) combination 
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Discharging Mode 

In the discharging mode the coulomb counter is presented by Qlost, which represents the 

amount of charge lost in the operating period τ by the equation: 

 𝑄𝑙𝑜𝑠𝑡(𝑡 + 𝜏) =  𝑄𝑙𝑜𝑠𝑡(𝑡) + ∆𝑄 (2-7) 

Self-Discharging Mode 

At the battery storage periods, the percentage of monthly self-discharging is converted to 

amount discharged per hour; this amount is designed by the constant qper/hour. Considering a 

5% rate of self-discharge per month qper/hour is approximated to 0.0016 Ah. So the quantity of 

charges dissipated in the open circuit period Qoc is calculated by the equation representing 

the accumulative losses during the storage hours.  

 𝑄𝑂𝐶(ℎ + 1) =  𝑄𝑂𝐶(ℎ) + 𝑞𝑝𝑒𝑟/ℎ𝑜𝑢𝑟  (2-8) 

Temperature effect 

The temperature variation affects considerably the state of charge of the Li-Ion battery. In 

order to improve accuracy of the battery state of charge, a temperature coefficient α is 

introduced and multiplied by the value of the calculated SoC. This coefficient varies 

depending on the operating temperature according to the intervals variations [7]: 

 𝛼 = {0.5,                𝑇 < −20°1,     − 20° ≤ 𝑇 ≤ 40°0.8,                  𝑇 > 40°  (2-9) 

Nevertheless, the Coulomb counting method is an open-loop algorithm and could result in 

significant inaccuracies due to uncertain disturbances and variables such as noise, 

temperature, current, etc. Also, there are difficulties in determining the initial value of SoC 

which causes a cumulative effect. In addition, the estimation accuracy depends highly on the 

current sensors used which may be affected by measurement errors, which also result in 

cumulative effect. Furthermore, the method needs complete discharging of the cell and 

periodic capacity calibration to obtain maximum capacity which shorten the battery lifespan 

[1]. 

Coulomb Counting and Kalman Filter combination 

The object of hybrid models is to benefit from the advantages of each method and obtain a 

globally optimal estimation performance. Since the information contained in the individual 

estimating method is limited, a hybrid method can maximize the available information, 

integrate individual model information and make the best use of the advantages of multiple 

estimating methods thus improving the estimation accuracy [6]. 

2.2 Inputs 

 Historical profile of measured battery currents 
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o  [Ibatt] = A 

 Historical profile of measured battery and battery cells voltages 

o  [Ubatt] = V 

 Historical profile of SoC from battery pack 

o  [SoC] = % 

Resolution: 1/min 

Ibatt, Ubatt should be average for the time period. 

2.3 Outputs 

 Current state of charge estimate in energy 

o  [SoCE] = kWh 

2.4 Internal parameters 

 Current state of charge estimate in percentage 

o [SoC%] = % 

 see “Submodule for identification of battery parameters” internal parameters 

2.5 Frequency of submodule calls 

The submodules is executed every minute. 

2.6 Algorithm 

Coulomb-counting converted into energy: 𝐸𝑏𝑎𝑡𝑡(𝑘 + 1) = 𝐸𝑏𝑎𝑡𝑡(𝑘) − 𝐼𝑏𝑎𝑡𝑡(𝑘 + 1) ∙ 𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 ∙ ∑𝑈𝑏𝑎𝑡𝑡(𝑘 + 1) (2-10) 

in case of Ibatt charge (-) or discharge (+). 

A standard Extended Kalman filter approach is implemented for the state of charge 

estimation. The basic principle of Kalman filtering is to construct a model of the real system 

which uses the internal variables which one wishes to estimate as inputs, while the outputs 

are some measurable variables. In this case the internal variable is the state of charge, while 

the measured variables are the voltage and current variables. The model of the battery 

contains the OCV(SoC) function and the internal resistance as parameters, which are 

determined during the parameter estimation phase.  

The battery model provides a prediction for the battery voltage and the state of charge for 

the next time step based on the previous state of charge and the current values. In the 

correction step the actual measured voltages are used for the correction of the SoC internal 

model variable. 

The stored energy is corrected based on the corrected SoC value. 
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3 Submodule for prediction of the photovoltaic array energy 

production (M.PE.3) 

3.1  Submodule inputs 

Table 3.1: Required inputs for the photovoltaic array production prediction submodule. 

Variable name Variable annotation Variable description 

Photovoltaic array power 

meters data 
𝐸pv  

Photovoltaic array energy 

production measured 

directly on the array power 

meter 

Weather measurements 

UNIZG-FER pilot site: 𝑇env, 𝐼diffℎ , 𝐼dirn  

Remaining pilot sites: 𝑇env, 𝐼gloℎ , 𝐼glot  

Measured weather 

variables: temperature, 

diffuse horizontal and direct 

normal irradiance (UNIZG-

FER site), global horizontal 

and tilted global irradiance 

(remaining sites). 

Weather predictions (𝑇env)N, (𝐼dirn )N, (𝐼diffh )N 

Forecasted weather 

variables (temperature, 

direct normal and diffuse 

horizontal irradiance). 

Time indicators 𝜏 

Variables representing time 

of the day, time of the week 

and day of the year. 

Calculated from current and 

historical datetimes. 

 

3.1.1. Solar irradiance data 

Depending on the availability of solar irradiance measurements on different pilot sites 

throughout the project, two separate sets of weather measurements inputs are used. 

 On the UNIZG-FER pilot site, where direct normal and diffuse horizontal irradiance 

measurements are available, they are used as submodule inputs and paired with the same 

forecasted variables during submodule operation.  

Due to high costs of direct and diffuse irradiance sensors other pilot sites provide 

measurements of global horizontal and tilted global irradiations which are then used as 

submodule inputs. Since measured and forecasted irradiances are now different, during 

submodule operation,  forecasted direct and diffuse irradiance, solar angles (obtained 

through the use of Pysolar python library), geographical pilot site data and current datetime, 

are used for calculation of global horizontal and tilted global irradiances thus matching the 

measured and forecasted irradiance variables. 
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3.2.  Submodule outputs 

Table 3.2: Outputs of the photovoltaic array production prediction submodule. 

Variable name Variable annotation Variable description 

Prediction model 

parameters (for off-line 

operation of the 

submodule) 

𝜃𝑃𝑉  
Needed for on-line 

operation of the submodule 

Predicted profile of the 

photovoltaic array energy 

production (for on-line 

operation of the 

submodule) 

(𝐸pv)N 

Needed for the MPC 

module on the microgrid 

level 

 

Since the photovoltaic array production model is based on artificial neural networks (as 

presented in the following section 3.3) the predictions sometimes tend to reach impossible 

values, e.g. negative values when fluctuating around 0 or slightly positive values during night 

time with no solar irradiation. The structure of neural networks prohibits the model to 

incorporate exact boundaries on the model outputs, therefor all generated predictions are 

post-processed in order to avoid such unexpected values. Therefore, all negative predicted 

values are set to 0, as well as all values between dusk and dawn. Dusk and dawn times for a 

specific pilot site location are calculated using Astral python library. 

3.3.  Methodology 

Based on a detailed description of artificial neural networks (ANN) given in [8], in the 

following sections a condensed description of ANNs structures and learning algorithms is 

given, together with a description of prediction module structure and operation schemes. 

3.3.1. Artificial neural networks 

Understanding of the human brain functioning and its learning and adaptation abilities made 

researchers try imitating its structure in order to imitate its capabilities in the computer 

systems. The basic element of the brain is a neural cell or neuron. Human brain contains 10
11

 

neurons interconnected in the network with more than 10
15

 links. Although the neuron 

structure is rather simple, because of the immense number of links among them, a brain can 

perform the most complex operations. Schematic representation of a biological neuron is 

shown in Figure 3.1. 

Neuron is composed of the cell body (soma), axon and a number of dendrites. Front end of 

an axon is connected to the cell body and its back end is split in a large number of branches. 

These branches are terminated by telodendria with their terminal buttons that touch 

dendrites of the other neurons. The terminal buttons contain numerous small bags with 

transmitters. A small distance between a telodendron of one neuron and a dendrite of 

another is called a synapse. Axon of one neuron forms synaptic interactions with many other 

neurons. Impulses generated in the cell body travel through an axon to a synapse. 
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Depending on the efficiency of each synaptic transfer, action potentials of different intensity 

come over dendrites to the cell body where they are then collected and processed. If their 

cumulative value is greater than the neuron sensitivity threshold, a cell body generates an 

action potential which is spread over the axon to the other neurons, and if it is lower, the 

neuron remains inactive and does not generate an action potential. From the signal 

processing perspective, neuron operation can be divided in synaptic operation which gives a 

certain relevance (weight) to each input signal and somatic operation which collects all the 

"weighted" input signals, and due to their cumulative values, generates or does not generate 

a signal which is transferred towards other neurons. 

Axon

Myelin sheath

Nucleus

Soma (cell body)

Dendrite
Telodendron

Synapse
Telodendron of 

the other neuron

 

Figure 3.1: Schematic representation of a biological neuron.  

3.3.1.1. Artificial neuron model 

Early research in the field of artificial neurons was published by McCulloh and Pitts in 1943 

and 1947 [9], [10]. Their model was based on a simple implementation of synaptic and 

somatic operations and was called a perceptron. Schematic representation of a perceptron 

is shown in Figure 3.2. 
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Figure 3.2: Schematic representation of a perceptron. 

Synaptic operation is performed by multiplying input signals 𝑥𝑖  with their weight coefficients 𝑤𝑖. Sum of all weighted signals is compared to a neuron sensitivity threshold 𝑤𝑛+1. If this 
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sum is greater than a sensitivity threshold, nonlinear activation function 𝜓 generates an 

output signal 𝑦 equal to 1, and if it is less, neuron output is zero. 

Mathematically, a perceptron can be described using these relations: 

𝑣(𝑡) = ∑𝑤𝑖(𝑡)𝑛
𝑡=1 𝑥𝑖(𝑡) − 𝑤𝑛+1, 
𝑦(𝑡) = ψ(𝑣),    

 

(3-1) 

 

(3-2) 

where: 𝒙𝒖 = [𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)]𝑇 is a vector of neuron input signals; 𝒘𝒔 = [𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)]𝑇 is a vector of neuron input signals; 𝒘𝒏+𝟏  is a neuron sensitivity threshold; 𝒗(𝒕)  is a similarity measure between input signals and synaptic weight 

coefficients (result of the confluence operation); 𝛙(𝒕) is a nonlinear activation function; 𝒚(𝒕) is a neuron output. 

However, because of the too simple model of a neuron, especially because of the 

discontinuity in nonlinear activation function, perceptron is not able to solve some simple 

operations. These constraints of the perceptron can be overcome by applying a continuous 

differentiable activation function. Sigmoid functions are commonly used as activation 

functions because it was proved that the ANNs composed of at least three layers of neurons 

with sigmoid functions can represent any continuous function. One of the most commonly 

used activation functions is tansig defined by the following expression: 

ψ(𝑣) = 21 + 𝑒−2𝑔0𝑣 − 1, (3-3) 

 

where 𝑔𝑜 is an activation gain and it is usually set to 1. Because of an extension of the initial 

model, in literature neurons with sigmoid activation functions are also referred to as 

perceptrons. 

Neuron models can be divided in two groups: static and dynamic models. Static neuron 

models, as opposed to dynamic ones, do not contain dynamic elements and their output 

depends exclusively on current values of input signals and weight coefficients. In this 

deliverable only ANNs with static neuron models are analysed. 

3.3.1.2. Multilayer perceptron 

Static neural networks are most commonly used ANNs, especially in identification and 

control applications. A basic element of the static ANN is a static neuron. In static ANNs 

neurons are organised in a feedforward way, i.e.: each neuron can be connected to the 

network inputs and/or to other neurons, but in the way that no feedback connections are 
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formed. Therefore, static ANNs do not contain any dynamic elements and that makes them 

statically stable which is their most important advantage in relation to dynamic ANNs. 

However, in order to model a dynamic system, delayed input and output signals have to be 

explicitly included in the vector of input signals of the static ANN. The most commonly used 

static ANNs are multilayer perceptrons (MLP) whose structure is presented in Figure 3.3. 

MLPs consist of perceptrons organized in serially connected layers. Layers are often labelled 

with numbers 0, 1, 2,⋯ , 𝐿, while for the number of nodes in the 𝑙-th layer we use label 𝑛(𝑙). 

The zeroth layer only transfers the input vector to an input of the first layer, 𝐿-th layer is an 

output layer, while layers between them are called hidden layers. Every neuron in a hidden 

layer is connected to all the neurons in two neighbouring layers with unidirectional 

feedforward connections. Connections between neurons of the neighbouring layers are 

represented by synaptic weight coefficients which act as signal gains on the corresponding 

connections. Values of the synaptic weight coefficients determine the network behaviour, 

i.e.: its ability of approximating a nonlinear function. 
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Figure 3.3: Schematic representation of a multilayer perceptron. 

Mathematically, MLPs can be described by the following relations: 𝑦0 = 𝑥, (3-4) 𝑥𝑙 = [𝑦𝑙−1𝑇 , 1]𝑇 ,       1 ≤ 𝑙 ≤ 𝐿, (3-5) 𝑣𝑙 = 𝑊𝑙 ∙ 𝑥𝑙 ,         1 ≤ 𝑙 ≤ 𝐿, (3-6) 𝑦𝑙 = ψ(𝑣𝑙),         1 ≤ 𝑙 ≤ 𝐿, (3-7) 

where: 𝒙 = [𝑥1, 𝑥2,⋯ , 𝑥𝑛(𝑥)]𝑇 is a vector of the network input od dimension 𝑛(𝑥); 𝒚𝟎 = [𝑦0,1, 𝑦0,2,⋯ , 𝑦0,𝑛(0)]𝑇  is an output vector of the 0 -th layer of 

dimension 𝑛(0); 𝒙𝒍 = [𝑥𝑙,1, 𝑥𝑙,2,⋯ , 𝑥𝑙,𝑛(𝑙−1), 𝑥𝑙,𝑛(𝑙−1)+1]𝑇  is an input vector to the 𝑙-th layer 

(input 𝑥𝑙,𝑛(𝑙−1)+1 = 1 multiplied by corresponding weight coefficient gives a 

scalar bias to neurons of the 𝑙-th layer); 𝒗𝒍 = [𝑣𝑙,1, 𝑣𝑙,2,⋯ , 𝑣𝑙,𝑛(𝑙)]𝑇 is an output vector of the confluence operation 

of the 𝑙-th layer; 
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𝒚𝒍 = [𝑦𝑙,1, 𝑦𝑙,2,⋯ , 𝑦𝑙,𝑛(𝑙)]𝑇 is an output vector of the 𝑙-th layer; 

𝑾𝒍 = [  
  𝒘𝒍,𝟏,𝟏 ⋯ 𝒘𝒍,𝟏,𝒋⋮ ⋮ ⋮𝒘𝒍,𝒊,𝟏 ⋯ 𝒘𝒍,𝒊,𝒋

⋯ 𝒘𝒍,𝟏,𝒏(𝒍−𝟏)      𝒘𝒍,𝟏,𝒏(𝒍−𝟏)+𝟏⋮ ⋮ ⋮⋯     𝒘𝒍,𝒊,𝒏(𝒍−𝟏)        𝒘𝒍,𝒊,𝒏(𝒍−𝟏)+𝟏⋮ ⋮ ⋮𝒘𝒍,𝒏(𝒍),𝟏 ⋯ 𝒘𝒍,𝒏(𝒍),𝒋 ⋮ ⋮ ⋮⋯ 𝒘𝒍,𝒏(𝒍),𝒏(𝒍−𝟏)  𝒘𝒍,𝒏(𝒍),𝒏(𝒍−𝟏)+𝟏]  
  

 is a 

weight coefficient matrix of the synaptic connections of the 𝑙-th layer, 

dimension of which is 𝑛(𝑙) × (𝑛(𝑙 − 1) + 1); 𝜳𝒍(𝒗𝒍) = [𝛹𝑙,1(𝑣𝑙,1),𝛹𝑙,2(𝑣𝑙,2),⋯ ,𝛹𝑙,𝑛(𝑙)(𝑣𝑙,𝑛(𝑙))]𝑇is an activation function 

vector of the 𝑙-th layer (usually 𝛹𝑙,1 = 𝛹𝑙,2 = ⋯𝛹𝑙,𝑛(𝑙)). 
The most commonly used activation function in the hidden layer is tansig, while in the 

output layer linear activation function is used. The activation gain is usually set to one.  

The most important properties of the ANNs are universal approximation, learning and 

adaptation. ANN property of approximating any continuous function to an arbitrary accuracy 

is its most important property from the perspective of modelling, identification and control 

of nonlinear processes. Learning and adaptation properties enable that an adequately 

calibrated ANN has the generalization ability when the data that was not present in the 

calibrating data set comes to its input. 

3.3.1.3. Neural network learning algorithms 

Learning algorithm tunes network parameters in order to achieve its desired behaviour. In 

identification and control of nonlinear dynamic systems desired behaviour of a neural 

network is usually known, so error-based algorithms are used for the learning/calibrating 

procedure. Schematic representation of the error-based algorithm for neural network 

learning is shown in Figure 3.4. 

LEARNING 
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NEURAL 
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x(t)

Δw(t)

tuning of the weight 

coefficients desired 

network output

error 
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input 

data network 

output
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yd(t)
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Figure 3.4: Schematic representation of the error-based algorithm for neural network learning. 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 Annex 1 – Microgrid level prediction and estimation   

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  26 

 

Resulting neural network response 𝑦𝑛  to the input data is compared to the external 

reference signal 𝑦𝑑, which represents desired network behaviour, generating error signal 𝑒 

based on which the learning algorithm changes synaptic weight coefficients of the network 

in order to improve its behaviour, i.e.: to decrease the error. As an error measure a criterion 

function ℑ(Θ) is used and it can be any positive scalar function dependent on ANN 

parameters 𝚯. The most commonly used criterion function is defined as: 

ℑ(𝜣) = 12 ∑ 𝑒(𝑣,𝜣) ∙ 𝑒𝑇(𝑣, 𝜣) = 12 ∑ ∑ 𝑒𝑖2(𝑣, 𝜣)𝑛(𝐿)
𝑖=1 = 12 𝑒∗𝑇(𝜣) ∙ 𝑒∗(𝜣)𝑁

𝑣=1
𝑁

𝑣=1 ,  

(3-8) 

 

where ν is a number of the measured sample, 𝑁 is an overall number of measured samples, 𝑒∗(Θ) is the error vector of the whole measured data set, which is of dimension 𝑁𝑒 = 𝑁 ⋅𝑛(𝐿). 

There are two basic approaches in minimizing the criterion function ℑ(Θ): non-recursive and 

recursive. According to the non-recursive approach, function ℑ(Θ)is minimized such that 

network parameter changes are determined based on the complete set of 𝑁 measured 

samples. According to the recursive approach, function ℑ(Θ) is minimized based on a local 

criterion function ℑν(Θ), i.e. network parameters are changed after each measured sample. 

Learning algorithm tunes network parameters until the criterion function reaches its 

minimum. Minimum of the criterion function ℑ(Θ) can be formally defined by its Taylor 

series expansion in vicinity of the parameter vector Θ0 for which the minimum is obtained, 

and by ignoring its third and higher order terms: 

ℑ(𝜣) ≅ ℑ(𝜣𝟎) = ∇ℑ𝑇(𝜣)|𝜣=𝜣𝟎 ∙ ∆𝜣 + 𝟏𝟐∆𝜣𝑻 ∙ 𝑯(𝜣)|𝜣=𝜣𝟎 ∙ ∆𝜣, (3-9) 

where:  ∆𝜣 = 𝜣 − 𝜣𝟎; ∇ℑ(𝜣) is a gradient vector of the criterion function: 

∇ℑ(𝜣) = [𝜕ℑ(𝜣)𝜕𝜃𝟏 , 𝜕ℑ(𝜣)𝜕𝜃𝟐 , ⋯ , 𝜕ℑ(𝜣)𝜕𝜃𝒏(𝜃)] ; (3-10) 

  𝑯(𝜣) = ∇2ℑ(𝜣)  is a Hessian matrix of the criterion function: 

𝑯(𝜣) =
[  
   
   𝜕2ℑ(𝜣)𝜕𝜃12 𝜕2ℑ(𝜣)𝜕𝜃𝟏𝜕𝜃𝟐 ⋯ 𝜕2ℑ(𝜣)𝜕𝜃𝟏𝜕𝜃𝒏(𝜃)𝜕2ℑ(𝜣)𝜕𝜃𝟐𝜕𝜃𝟏 𝜕2ℑ(𝜣)𝜕𝜃22 ⋯ 𝜕2ℑ(𝜣)𝜕𝜃𝟐𝜕𝜃𝒏(𝜃)⋮             ⋮        ⋱          ⋮𝜕2ℑ(𝜣)𝜕𝜃𝒏(𝜃)𝜕𝜃𝟏 𝜕2ℑ(𝜣)𝜕𝜃𝒏(𝜃)𝜕𝜃𝟐 ⋯ 𝜕2ℑ(𝜣)𝜕𝜃𝒏(𝜃)2 ]  

   
    . (3-11) 

 

For the criterion defined by (3-8), gradient vector and Hessian matrix become: ∇ℑ(𝜣) = 𝑱𝑇(𝜣) ∙ 𝑒∗(𝜣), (3-12) 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 Annex 1 – Microgrid level prediction and estimation   

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  27 

 

𝑯(𝜣) = 𝛻2ℑ(𝜣) = 𝑱𝑇(𝜣) ∙ 𝑱(𝜣) + ∑𝑒𝑖∗(𝜣)𝛻2𝑒𝑖∗(𝜣)𝑵𝒆
𝒊=𝟏 , (3-13) 

where 𝑱(𝜣) is a Jacobian matrix: 

𝑱(𝜣) =
[  
   
  𝜕𝑒1∗(𝜣)𝜕𝜃𝟏 𝜕𝑒1∗(𝜣)𝜕𝜃𝟐 ⋯ 𝜕𝑒1∗(𝜣)𝜕𝜃𝒏(𝜃)𝜕𝑒2∗(𝜣)𝜕𝜃𝟏 𝜕𝑒2∗(𝜣)𝜕𝜃𝟐 ⋯ 𝜕𝑒2∗(𝜣)𝜕𝜃𝒏(𝜃)⋮             ⋮         ⋱        ⋮𝜕𝑒𝑁𝑒∗ (𝜣)𝜕𝜃𝟏 𝜕𝑒𝑁𝑒∗ (𝜣)𝜕𝜃𝟐 ⋯ 𝜕𝑒𝑁𝑒∗ (𝜣)𝜕𝜃𝒏(𝜃) ]  

   
   . (3-14) 

 

Parameter vector Θ = Θ∗  will be the minimum argument of the function ℑ(Θ)  if the 

following conditions are fulfilled: ∇ℑ(Θ∗) = 0, (3-15) ΔΘT ⋅ H(Θ∗) ⋅ ΔΘ > 0. (3-16) 

 

Therefore, tuning of the ANN parameters Θ is in fact a nonlinear optimisation problem 

where the criterion function ℑ(Θ) is the objective function of the optimisation problem. 

Gradient methods are most commonly used nonlinear optimisation techniques. The main 

problem in applying gradient methods in ANN learning procedure is calculating a gradient 

vector of the criterion function over the network parameters. This problem has slowed 

research and application of ANNs for a while, but was successfully solved using the 

backpropagation algorithm. More details can be found in [8]. 

Tuning of the ANN parameter vector Θ is based on an iterative procedure: 𝛩(𝑘 + 1) = 𝛩(𝑘) + 𝛥𝛩(𝑘) = 𝛩(𝑘) + 𝛼(𝑘)𝑠𝑑(𝑘), (3-17) 

where: 𝑠𝑑(𝑘) is the minimum searching direction in the 𝑘-th iteration of the optimisation 

procedure (it is based on an information on a function ℑ(Θ)); 𝛼(𝑘) is the learning coefficient in the 𝑘-th iteration of the optimisation procedure (it 

determines the step size in the searching direction). 

Depending on the procedure of determining the minimum searching direction 𝑠𝑑(𝑘), 

gradient methods can be divided into four groups: 

 Steepest descent methods: 𝑠𝑑(𝑘) ∶= −∇ℑ(Θ(𝑘)); 
 Conjugate gradient methods: 𝑠𝑑(𝑘) ∶= −∇ℑ(Θ(𝑘)) + β(𝑘) ⋅ 𝑠𝑑(𝑘 − 1), where β(𝑘) 

is a scalar parameter which ensures conjugacy; 

 Newton methods: 𝑠𝑑(𝑘) ∶= −[∇2ℑ(Θ(𝑘))]−1∇ℑ(Θ(𝑘)); 

 Quasi-Newton methods [11], [12]: 𝑠𝑑(𝑘) ∶= −𝑆(𝑘)∇ℑ(Θ(𝑘))  where 𝑆(𝑘) ≅[∇2ℑ(Θ(𝑘))]−1
. 
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ANN learning algorithms are named based on the corresponding nonlinear optimisation 

methods which are used: steepest descent algorithms, conjugate gradient algorithms etc. 

3.3.2. Applying neural networks to system modelling 

In the last 20 years neural network applications for predicting variables in ecological and 

technical systems have become a well-known procedure in a research community [13]. In 

the early phases of their applications, ANNs were considered as a novel approach in system 

modelling and the majority of published papers in that period were related to applying ANNs 

in different systems and exploring their advantages in relation to the well-known statistic 

approaches [14]. Many review papers in this research area did not only affirm a potential of 

using the ANNs in prediction systems, but they also noted an importance of developing a 

standard methodology in the model development procedure using ANNs. Clearly defined 

methodology is an important procedure for all modelling methods, but especially in ANN 

modelling because models are developed based on the available data and they are not 

explicitly based on the physical system that is modelled, therefore, a possibility of 

developing a model which is not very meaningful is increased. 

Main steps in developing the prediction model using ANNs are shown in Figure 3.5. Flow of 

data and outcomes for each step are also shown. First step in model development process is 

a choice of appropriate model outputs (variables which are going to be predicted) and 

potential inputs. A choice of potential inputs is based on a priori knowledge on the modelled 

process and on data availability. Selected data have to be processed (scaled, filtered, lagged) 

for being in an appropriate form for the next model development steps. 

A general ANN prediction model can be expressed in the following form: Y = f(X,W) + e, (3-18) 

  

where 𝑌 is a model output vector, 𝑋 is a model input vector, 𝑊 is a model parameter vector 

(weight coefficients), 𝑓 is a function which defines input-output relationship and 𝑒 is a model 

error vector. Therefore, in model development process we need to define model inputs 𝑋, a 

functional relationship 𝑓 defined by the ANN structure and ANN parameter vector 𝑊. Model 

inputs are determined using the so called Input Variable Selection (IVS) procedures which 

are described in subsection 3.3.3. Result of this step are model development data which are 

then divided in calibration and validation data sets. Calibration data are used in ANN 

learning algorithms for determining the optimal model parameters, while validation data are 

used for validating the calibrated model on the independent data set. If implicit 

regularization is used as a stopping criterion of the learning algorithm, calibration data are 

divided in training and testing data sets. 
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Figure 3.5: Main steps in the model development process using artificial neural networks [14].  

The main objective of the ANN learning process is to find the global minimum of the 

criterion function ℑ(Θ). However, in modelling of dynamic systems which inherently contain 

noise, the global minimum of the criterion function is not the optimal solution because the 

obtained model does not assure the best generalization properties. In the first phase of the 

ANN learning process a decrease of the criterion function ℑ(Θ) on the training data leads to 

a decrease of the criterion function ℑ𝔱(Θ) on the testing data. However, after certain 

number of iterations, value of the criterion function ℑ𝔱(Θ) starts increasing although ℑ(Θ) is 

still decreasing and, therefore, further adjusting of the ANN parameters leads to a 

deterioration of its generalization properties. This problem can be solved by early stopping 
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of the learning process when a criterion function value on the testing data starts increasing. 

This procedure is called an implicit regularization. 

Next step implies choosing a number of hidden layers and a number of neurons in each 

layer. The optimal structure of ANN is usually determined iteratively [14]. For a fixed 

structure, optimal parameters of the ANN are determined using learning procedure and they 

depend on the choice of learning algorithm and on initial ANN parameters. In general case 

criterion function is nonconvex and applying gradient methods can trap model parameter 

vector in a local minimum of the criterion function which is not the optimal solution. 

Therefore, a calibration process implies a number of calibration instances for different initial 

values of model parameters. ANN, defined by its structure and parameters, which has the 

minimal criterion function value on the calibration data is then validated on the validation 

data set. To ensure that a model development process results in the best possible model, it 

is required that training, testing and validation data sets have the same statistical properties 

[15]. 

3.3.3. Input variable selection procedure 

One of the most important steps in modelling of complex systems is selection of the 

appropriate input variables. However, this step is usually not concerned to be of an extreme 

importance and most of the input variables are determined heuristically or based on a priori 

knowledge of the system which can result in including too many or too little input variables 

[16]. 

As a consequence of omitting one or more relevant input variables, model will not be able to 

describe the whole dynamics and phenomena of the system. Possibility of omitting relevant 

input variables is much greater for time series in which input candidates are not only 

different variables, but also their lagged values (unless dynamic ANNs are used) which 

significantly increases the number of potential input variables. Including too many input 

variables can be caused by poorly assessed relevance of an input variable or by existence of 

a redundancy among them, where some of the chosen variables contain some useful 

information, but are interdependent, so they contain a redundant information. This case 

leads to an increase in a number of local minima in the criterion function [14] and makes it 

harder to determine the optimal model parameters if a gradient method is used for ANN 

learning. On the other hand, with an increase of input variables, a number of model 

parameters is also increased which, as a consequence, leads to decreased speed and quality 

of the learning procedure. Furthermore, existence of an input variable which does not affect 

the output variable can lead to a deterioration of ANN generalization properties, i.e. the 

model will perform poorly on data that were not used during model calibration procedure. 

These considerations indicate that the optimal ANN input variable set consist of the minimal 

set of variables which can describe the system behaviour well enough. A number of IVS 

algorithms were developed and they can be classified in wrapper and filter algorithms [17]. 

3.3.3.1. Wrapper algorithms 
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IVS using wrapper algorithms is based on developing a number of ANNs with different input 

vectors and the choice of an appropriate input set is determined based on performance of 

the corresponding ANN. The main drawback of this approach is that such a procedure can 

last very long because it is required to develop a large number of ANNs whereas the 

development of each implies an appropriate choice of the ANN structure and the learning 

algorithm. Additionally, appropriateness of the input variables chosen for a certain ANN 

architecture is not guaranteed for another architecture, so the application of the obtained 

input set is rather limited [16]. 

For 𝑑 potential input variables, a number of possible input subsets is 2𝑑 − 1. Therefore, 

because of the large computational and time requirements, all possible input variable 

combinations are almost never tested. The most commonly used wrapper algorithms are 

forward selection, backward elimination and genetic algorithms [17]. 

Forward selection is an incremental procedure for forming the optimal input variable set in 

which a number of variables is incrementally increased. In the beginning, one out of 𝑑 variables, for which an ANN with the best performance is obtained, is chosen. Then, the 

input set is enlarged by the next one out of 𝑑 − 1 remained variables for which an ANN 

performance is most improved. A procedure is repeated until adding a new variable to the 

input set does not lead to a significant improvement of the ANN performance. 

Backward elimination is a procedure inverse to a forward selection, i.e. the input variable set 

is incrementally reduced. The procedure starts with an input set which contains all the 

potential input variables and the least relevant variables are progressively eliminated from 

the input set. This procedure is computationally more intensive than the forward selection 

because a large number of inputs requires learning an ANN with much larger number of 

parameters. 

Genetic algorithms introduce stochastic elements in the procedure of selecting the optimal 

input variable set, increasing a possibility of finding the optimal set. Genetic algorithms show 

their advantages in relation to forward selection and backward elimination when the 

candidate set contains variables which only combined with other variables show their 

relevance to an output variable, while taken separately, do not have an excessive 

importance. 

3.3.3.2. Filter algorithms 

Unlike wrapper, filter algorithms use statistical measure of dependence between an output 

variable and potential inputs as a criterion for input selection. Uncoupling IVS procedure and 

model calibration does not only increase the modelling efficiency, but also extends possible 

applications of the obtained input set. However, efficiency of a filter algorithm is highly 

dependent on the statistical measure employed [16]. 

The most commonly used statistical measure of dependence is a linear correlation 

coefficient whose main drawback is that it only determines the linear dependence between 

variables which is particularly problematic in the model development using ANNs because 

they are used as an alternative to linear regression when a dependence between model 

inputs and output is nonlinear. Therefore, it is more meaningful to use an appropriate 
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nonlinear statistical measure of dependence, like mutual information [14]. Unlike linear 

correlation coefficient, mutual information is also sensitive to dependences which are 

reflected in higher input-output correlation moments – mutual information is equal to zero 

if and only if two variables are strictly independent [18]. 

Apart from inputs relevance, IVS procedures should also consider redundancy of the input 

variables. In order to do so, a suitable algorithm based on partial mutual information (PMI) 

was developed and it is described in the next subsection. 

3.3.3.3. Input variable selection algorithm based on partial mutual information 

For a given continuous random variable 𝑋 with a codomain 𝐶(𝑋), Shannon entropy is 

defined as: 

H(X) = −∫ f(x) ln f(x)C(X)  dx, (3-19) 

 

where 𝑥 is an outcome of random variable 𝑋 and 𝑓(𝑥) is its probability density function 

(pdf). Entropy is a term well-known in the information theory and it represents an 

informational description of random events and defines a measure of the information 

content, i.e. random variable uncertainty. Mutual information of two random variables, 𝑋 

and 𝑌, is defined as: 

I(X; Y) = ∫ ∫ f(x, y) ln ( f(x, y)f(x)f(y))C(X)C(Y)  dxdy, (3-20) 

 

where 𝑓(𝑥) and 𝑓(𝑦) are pdfs of the variables 𝑋 and 𝑌, respectively, and 𝑓(𝑥, 𝑦) is a joint 

pdf of the random vector (𝑋, 𝑌). Mutual information can be expressed using entropies as: I(X; Y) = H(X) + H(Y) − H(X, Y), (3-21) 

 

where 𝐻(𝑋) and 𝐻(𝑌) are entropies of the random variables 𝑋 and 𝑌, respectively, and 𝐻(𝑋, 𝑌) is a joint entropy of the random vector (𝑋, 𝑌). Mutual information represents a 

reduction in uncertainty of the random variable 𝑌 knowing the random variable 𝑋 and vice 

versa. Figure 3.6 depicts the dependency among mutual information and entropies of the 

random variables 𝑋 and 𝑌. 

Here, 𝐻(𝑌|𝑋) is conditional entropy of 𝑌 given 𝑋, that is, the amount of uncertainty in the 

random variable 𝑌 when the value of 𝑋 is known, and it is formally defined as: 

H(Y|X) = ∫ ∫ f(x, y) ln ( f(x)f(x, y))C(X)C(Y)  dxdy. (3-22) 
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Figure 3.6: Venn diagram showing a relationship among mutual information and entropies of random variables X 

and Y.  

Let us now consider the third random variable, 𝑍. A part of a mutual information 𝐼(𝑍; 𝑌) 

which is not contained in 𝑋, 𝐼(𝑍; 𝑌|𝑋), is called a partial mutual information and it is 

determined using the following expression: I(Z; Y|X) = H(X, Z) + H(X, Y) − H(X) − H(X, Y, Z). (3-23) 

 

Given 𝑋 and the already reduced uncertainty 𝐻(𝑌|𝑋) shown in Figure 3.6, the PMI 𝐼(𝑍; 𝑌|𝑋) 

is defined as the further reduction in uncertainty of the random variable 𝑌 that is gained by 

the additional mutual observation of the random variable 𝑍. 

Figure 3.7 depicts the dependence among PMI, individual and joint entropies of the random 

variables 𝑋, 𝑌 and 𝑍. PMI is invariant under strictly monotonic transformations which makes 

it robust against possibly nonlinear distortions among random variables [19] and this is one 

of its most important advantages in relation to the linear correlation. However, a problem in 

determining a mutual information is that pdfs of the random variables have to be known. In 

practice, the real pdfs are not known and it is needed to estimate them. This topic is covered 

in the next subsection. 
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Figure 3.7: Venn diagram showing a relationship among partial mutual information and entropies of the random 

variables X, Y and Z. 

PMI-based IVS algorithm is presented in [20]. Details of the algorithm are presented here: 

Algorithm 1: Partial mutual information-based input variable selection 

Input: output variable 𝑌, potential input variables 𝐶 

Result: chosen input variables 𝑋 

Initialise 𝑋 ← ∅ 

while 𝐶 ≠ ∅ do 

       for each 𝑐 ∈ 𝐶 

              Estimate 𝐼(𝑐, 𝑌|𝑋) 

       Determine 𝑐𝑠 ∈ 𝐶 that maximises 𝐼(𝑐, 𝑌|𝑋) 

       if algorithm termination criterion is satisfied then 

  Stop running the algorithm 

       Move 𝑐𝑠 to 𝑋 

In [16] a number of algorithm termination criteria are analysed. In this work a predefined 

number of the most relevant input variables was used as a termination criterion. 

3.3.3.4. Estimating partial mutual information 

Considering the expression (3-19) it can be seen that for estimating an entropy of the 

random variable, it is first required to determine its pdf which is estimated from the 

available historical data, i.e. from the considered random variable outcomes. There are two 

main approaches in estimating a pdf: parametric and non-parameteric. 

The parametric approach assumes that data are drawn from a known parametric family of 

distributions, for example the normal distribution with mean μ and variance σ2. Estimating 

the pdf then becomes a problem of estimating the parameters μ  and σ2 . The non-

parametric approach does not assume a form of the pdf, so non-parametric methods are 
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usually much more robust and accurate than the parametric ones. A review of the most 

commonly used non-parametric estimation methods can be found in [21]. 

One of the most commonly used non-parametric pdf estimation methods is kernel density 

estimation and this method is proposed in [20] in the original version of Algorithm 1. 

However, this approach has some drawbacks -- apart from the fact that it is computationally 

very intensive and that it requires relatively large number of data samples for an accurate 

estimation, its behaviour is dependent on the kernel function parameters. This problem 

becomes even harder when a dimension of the random variable is increased [22]. Much 

more accurate and computationally less intensive pdf estimation method is k-th nearest 

neighbour method. The method in which an entropy of the random variable is directly 

determined is presented in [19] and it is described here. 

Let us consider three continuous time series, {𝑥𝑡}, {𝑦𝑡} and {𝑧𝑡}, which represent the 

outcomes of random processes {𝑋𝑡}, {𝑌𝑡} and {𝑍𝑡}, respectively. For each vector 𝑣𝑡 ≡{𝑥𝑡,  𝑦𝑡 ,  𝑧𝑡},  𝑡 = 1,2,⋯ , 𝑁 and a fixed integer 𝑘,  1 ≤ 𝑘 ≪ 𝑁, a distance ε𝑘(𝑡) to its 𝑘-th 

neighbour is defined. It means that a set {𝑣𝑡∗}, where 𝑡∗ = 1,2,⋯ ,𝑁,  𝑡∗ ≠ 𝑡, contains 𝑘 − 1 

vectors with distances from 𝑣𝑡  less than ε𝑘(𝑡) and 𝑁 − 𝑘 − 1 vectors with the distance 

greater than ε𝑘(𝑡). 

Therefore, for each 𝑡 distance of 𝑣𝑡 to each element of {𝑣𝑡∗} is determined: ε(t) = {||vt∗ − vt||}. (3-24) 

 

This set is then sorted and distance ε𝑘(𝑡) is determined by selecting the 𝑘-th element of the 

sorted set. The distance is determined using  𝑚𝑎𝑥 norm, i.e. || ⋅ || =  max {|| ⋅||𝑥, || ⋅||𝑦, || ⋅ ||𝑧}, where || ⋅ ||𝑥, || ⋅ ||𝑦 and || ⋅||𝑧 can be any norm, but this algorithm suggests using  𝑚𝑎𝑥 norm as well. Let us now define a vector 𝑤𝑡 ≡ {𝑥𝑡,  𝑧𝑡},  𝑡 = 1,2,⋯ ,𝑁. 

For each 𝑡 a number of vectors in {𝑤𝑡∗} with distances strictly less than ε𝑘(𝑡) is determined: Nxz(t) = #{t∗ ≠ t; ||wt∗ − wt|| < εk(t)}. (3-25) 

 

where # denotes a number of elements in the set. In a similar way 𝑁𝑥𝑦(𝑡) and 𝑁𝑥(𝑡) are 

defined, for which 𝑤𝑡  is defined using vectors {𝑥𝑡,  𝑦𝑡}  and {𝑥𝑡} , respectively. PMI is 

estimated using the following expression: 

 𝐼(𝑍; 𝑌|𝑋) = 1𝑁 ∑[ℎ𝑁𝑥𝑧(𝑡) + ℎ𝑁𝑥𝑦(𝑡) − ℎ𝑁𝑥(𝑡)]𝑁
𝑡=1 − ℎ𝑘−1, (3-26) 

 

where ℎ𝑛 is the 𝑛-th negative harmonic number defined as ℎ𝑛 = −∑ 𝑖−1𝑛𝑖=1  [19]. 

The 𝑘-th nearest neighbour method is computationally much faster than kernel methods are 

and, regardless of a number of considered variables dimension, it requires defining only one 

scalar parameter, 𝑘.  

Here, we analyse the properties of the PMI estimator in case of the normal distribution for 

which PMI can be determined analytically, as shown in [19]. Multivariate normal distribution 
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of the random vector 𝑋 ∈ 𝑅𝑛 with mean 𝑎 ∈ 𝑅𝑛 and covariance matrix 𝑅 ∈ 𝑅𝑛×𝑛 is defined 

by its pdf: 

f(𝑋) = 1(2𝜋)𝑛/2√𝑅 𝑒𝑥𝑝(12 (𝑥 − 𝑎)𝑇𝑅−1(𝑥 − 𝑎)), (3-27) 

 

and it is denoted as 𝑋 ∼ 𝒩𝓃(𝑎, 𝑅) where |𝑅| denotes a determinant of the covariance 

matrix 𝑅. For 𝑛-dimensional normal distribution 𝒩𝓃(𝑎, 𝑅) entropy is determined using the 

following expression: 

𝐻(𝑋) = 𝑛2 (1 + 𝑙𝑛2𝜋) + 12 𝑙𝑛|𝑅|. (3-28) 

3.3.4. Structure of the prediction model 

This deliverable analyses an identification procedure for prediction models with time 

horizon of 12-36 hours. One of the main issues in developing such a multiple-output system 

is how to assess its performance, i.e.: how to define a criterion which will tell us if one model 

is better than the other. The response is trivial if each output of one model outperforms the 

corresponding output of the other model, but generally it is not the case. The simplest 

approach is to define a local criterion function for each output and a global criterion function 

could be e.g.: a sum of the local criterion functions. The first drawback of this approach is 

that we are usually more concerned about sooner prediction hours than about hours at the 

end of a prediction horizon, so we do not want to give the same weight to each local 

criterion function. An alternative is to use weighted sum of the local criterion functions as a 

global criterion, but a question of how to choose these weights remains open. The second 

drawback is that such a model has the same input vector which is used for describing input-

output relationship for each output, which generally does not have to be the optimal choice. 

Certainly, developing a separate model for each output can at least perform as well as one 

model with multiple outputs. The first advantage of this approach is that defining a criterion 

function is trivial because for single-output models the local criterion corresponds to the 

global criterion. The second advantage is that such an approach does not necessarily imply a 

unique input vector for each model. The main drawback of this approach is that the whole 

developing process, including IVS, defining the optimal model structure and model 

calibration has to be carried out multiple times which can be computationally very intensive 

for a large prediction horizon. The concept of this approach is depicted in Figure 3.8. 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 Annex 1 – Microgrid level prediction and estimation   

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  37 

 

HISTORICAL DATA
1-hour-ahead 

prediction model

2-hours-ahead 

prediction model

3-hours-ahead 

prediction model

n-hours-ahead 

prediction model

prediction 1 hour 

ahead

prediction 2 hours 

ahead

prediction 3 hours 

ahead

prediction n hours 

ahead

 

Figure 3.8: A static approach of the prediction system which uses a separate model for each system output. 

Unlike the above-mentioned static approaches, the third approach uses the fact that the 

prediction system is considered as dynamic, i.e.: its output depends on past outputs. This 

dynamic approach is depicted in Figure 3.9. The main idea behind this approach is that the 

model does not have to use all the actual data, but also the provisional data, e.g.: output of 

the 1-hour-ahead model is a prediction for one hour ahead and this value can be used by the 

same model for predicting for two hours ahead. Analogously, this procedure can be 

repeated for obtaining the prediction for k hours ahead. It is expected that this approach will 

be less accurate than the one shown in Figure 3.8. because in this case a prediction error of 

the model is accumulated over the whole prediction horizon. However, if the performance 

of such an approach is not much worse than the one of the static approach, from the 

computational point of view, applying dynamic approach is much more efficient and 

contains significantly less parameters. Additionally, in some applications a larger prediction 

horizon may be required. Extension of the existing prediction model to a larger prediction 

horizon using dynamic approach is trivial; for the static approach this is not the case. 

Therefore, a dynamic approach is chosen for the prediction system. 
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Figure 3.9: A dynamic approach of the prediction system which uses a single model for estimating system 

outputs for the whole prediction horizon. 

3.3.4.1. Adaptive structure of the prediction system 

It is often the case that historical data used for calibrating the prediction model do not cover 

the complete set of possible input-output vectors or that predicted variable values that 

occurred in past differs from values for the coming period due to factors which were not 

considered or did not have a significant impact on the variable during model calibration 

process. Occurrence of these factors can lead to poor predicting abilities of the existing 

prediction model. Therefore, for robust operation of the prediction system the model should 

be able to adapt to possible changes in the system. 
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Figure 3.10: Adaptive module structure / a principle overview. 

Modified structure of the prediction module is shown in Figure 3.10. The system is 

composed of two parts: off-line and on-line. In the off-line part historical data are used for 

obtaining the initial prediction model and this procedure is described in subsection 3.3.2. 

The on-line part of the module uses the initial model developed in the off-line part in order 

to generate predictions. When the data are available, they are compared to the 

corresponding predictions which results in the prediction error for the certain time instant. 

Model parameters are then tuned such that the prediction error is decreased. The presented 

procedure of using the feedback information on prediction accuracy for model parameters 

tuning introduces an adaptation ability to module. 

3.3.4.2. Possible approaches to the on-line tuning of model parameters 

Most real systems are time-variant. In order to track changes in the system, its model 

parameters should be continuously estimated. The on-line part of the prediction system, 

mentioned in the previous section, is the tool for continuous tuning of the model 

parameters such that the model tracks the actual predicted variable evolution as accurately 

as possible. 

Artificial neural network (ANN) is a flexible model structure that can be easily and 

systematically calibrated and adapted. There is a large number of methods suggested in 

literature for the so called recursive neural network learning. Some of them are based on the 

recursive approximation of typical gradient methods [8], [23]. On the other hand, some 
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recursive methods are based on the methodology for dynamic system state estimation [24]-

[27]. These methods are based on the state-space representation of the ANN model [28]: wk+1 = wk + rk, (3-29) dk = G(xk, wk) + ek, (3-30) 

 

where 𝐺 is a function which defines the input-output mapping and is determined by the 

ANN structure, 𝑥𝑘 is an input vector, 𝑤𝑘 is a vector of ANN parameters and 𝑒𝑘 is an error 

vector. In (3-29) a vector of parameters 𝑤𝑘 corresponds to a stationary process with identity 

state matrix, driven by process noise 𝑟𝑘. ANN model written in this form enables using 

extended Kalman filter (EKF) or unscented Kalman filter (UKF) for the ANN parameter 

estimation. However, the ANN models with relatively large number of inputs and nodes in 

the hidden layer result in a large number of parameters, and applying EKF or UKF becomes 

intractable due to numerical stability issues [29]. On the other hand, recursive gradient 

methods for ANN learning are quite robust and their application is not limited to ANNs with 

a small number of parameters. Therefore, this approach in recursive ANN learning is 

analysed hereinafter. 

3.3.4.3. Applying the on-line tuning procedure in normal operation 

We use the prediction model developed within subsection 3.3.2 as an initial prediction 

model for the on-line part of prediction system (see Figure 3.10). Gradient descent method 

with momentum term is used for the recursive ANN learning. ANN parameters Θ are 

updated based on the following relation: ΔΘ(k) = −α∇ℑν(Θ(k)) + γmΔΘ(k − 1), (3-31) 

 

where ΔΘ(𝑘) = Θ(𝑘 + 1) − Θ(𝑘), α is the learning coefficient, ∇ℑν(Θ(𝑘)) is the gradient of 

local criterion function on the corresponding data set and γ𝑚 is the nonnegative momentum 

term which speeds up the learning convergence while attenuating the parasitic oscillations 

[8]. If the parameter vector Θ is to be updated using more than one data sample, we 

consider two different learning styles: (i) incremental learning in which the model 

parameters are updated consecutively after each data sample is presented to the model; 

and (ii) batch learning in which the parameters are updated once after all the data samples 

are presented. The recursive ANN learning is performed using MATLAB® Neural Network 

Toolbox [30].  

The on-line tuning parameters, learning coefficient α and momentum term γ𝑚  can be 

determined based on the initial set of data that were used for obtaining the initial model. 

However, those data might not contain an evident variation in predicted variable, thus no 

significant difference in the performance of off-line and on-line model would be observed. 

Therefore, on-line tuning parameters can be determined based on the performance of on-

line prediction model on the modified testing data – e.g. a linear trend is added to the 

original data such that predicted variable mean increases by 50% of the initial mean per 

month. 

3.3.4.4. Concept of conditional adaptation (outliers handling) 
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In addition to the normal operation, another possible scenarios which affect the prediction 

system can occur. In the normal operation scenario we assumed that data do not contain 

potentially irregular or corrupted data samples (referred to as outliers). However, it is often 

the case that data on actual data are corrupted -- using these data samples within the on-

line tuning procedure could cause an undesirable model behaviour. Instantaneous change in 

mean may be a result of many different external factors that influence the predicted 

variable, but it may also be caused by a meter problem – in the latter case data are 

characterised as corrupted. 

The basic idea in avoiding the on-line tuning procedure using corrupted data is by marking 

those data, i.e. if a data sample is suspected to be an outlier, it is marked and that data 

sample will not be used in the on-line tuning procedure. In order to recognize an outlier 

occurrence, min/max values of the model inputs are used as boundaries for filtering the 

outliers. 

4. Submodule for non-controllable consumption prediction 

(M.PE.4) 

Submodule for prediction of the total non-controllable energy consumption on the microgrid 

level. 

4.1. Submodule inputs 

Table 4.1: Required inputs for non-controllable consumption prediction submodule. 

Variable name Variable annotation Variable description 

Historical profile of the 

non-controllable energy 

consumption on the 

microgrid level 

𝐸𝑒,nc 𝐸𝑡,nc 

Non-controllable energy 

consumption on the 

microgrid level, electrical 

energy for all pilot sites 

except Idrija pilot sites 

where both electrical and 

thermal energy on the 

microgrid level are 

considered 

Weather measurements 

UNIZG-FER pilot site: 𝑇env, 𝐼diffℎ , 𝐼dirn  

Remaining pilot sites: 𝑇env, 𝐼gloℎ , 𝐼glot  

Measured weather 

variables:  

temperature, diffuse 

horizontal and direct normal 

irradiance (UNIZG-FER site),  

global horizontal and tilted 

global irradiance (remaining 

sites). 

Weather predictions (𝑇env)N, (𝐼dirn )N, (𝐼diffh )N 

Forecasted weather 

variables (temperature, 

direct normal and diffuse 

horizontal irradiance). 
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Time indicators 𝜏 

Variables representing time 

of the day, time of the week 

and day of the year. 

Calculated from current and 

historical datetimes. 

 

4.1.1. Non-controllable thermal energy consumption 

Non-controllable thermal energy consumption on the microgrid level represents the 

microgrid level electrical (and thermal in case of Idirija pilots) energy consumption that is not 

controlled by the microgrid MPC modules. It is measured/calculated differently on each 

considered pilot site depending on the configuration of the pilot site microgrid level and 

available measurement equipment present on the site.  Determination of the non-

controllable electrical and thermal energy consumption for different pilot sites is presented 

in the following Table 4.2. 

Table 4.2 Non-controllable electrical and thermal energy consumption determination. 

Pilot site Electrical energy Thermal energy 

UNIZG-FER 

Overall consumption (energy 

exchange) of the building 

- 

electricity consumption on fan 

coils 

- 

electricity consumption of the 

chiller 

- 

electricity consumption of the 

circulation pump of the heat 

exchanger 

- 

energy exchange with the 

battery system 

+ 

production of the photovoltaic 

system 

 

HEP   

Idrija (school building) 
Overall electrical energy 

consumption of the building 

Heat exported from DHW tank 

to building 

Idrija (sports centre 

building) 

Overall electrical energy 

consumption of the building 

Heat exported from DHW tank 

to building 

EON 

Overall electrical energy 

consumption of the building 

- 

electrical energy consumption 

of heat pumps (4 water 

chillers) 

- 

electrical energy consumption 

of electric heaters 

+ 

electrical energy production of 

the PV system 
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- 

el. energy consumption of fan 

coils (4 heating/cooling circuits) 

STREM (school building) 

Consumption on the central 

electric meter 

- 

single fan coil consumption 

(z.pe.1 output) 

 

STREM (retirement care 

centre) 

Consumption on the central 

meter 

-  

load of the cooling machine 

(HVAC.MPC.2 cooling) 

- 

battery power 

 

EPHZHB 

Overall electrical energy 

consumption of the building 

- 

electrical energy consumption 

of fan-coils 

- 

electrical energy consumption 

of heat pump 

- 

electrical energy consumption 

of electric boiler 

 

 

4.1.2 Solar irradiance data 

Depending on the availability of solar irradiance measurements on different pilot sites 

throughout the project, two separate sets of weather measurements inputs are used. 

 On the UNIZG-FER pilot site, where direct normal and diffuse horizontal irradiance 

measurements are available, they are used as submodule inputs and paired with the same 

forecasted variables during submodule operation.  

Due to high costs of direct and diffuse irradiance sensors other pilot sites provide 

measurements of global horizontal and tilted global irradiations which are then used as 

submodule inputs. Since measured and forecasted irradiances are now different, during 

submodule operation,  forecasted direct and diffuse irradiance, solar angles (obtained 

through the use of Pysolar python library), geographical pilot site data and current datetime, 

are used for calculation of global horizontal and tilted global irradiances thus matching the 

measured and forecasted irradiance variables. 

4.2 Submodule outputs 

Table 4.2: Outputs of the non-controllable consumption prediction submodule. 

Variable name Variable annotation Variable description 

Prediction model 

parameters (for off-line 

operation of the 

𝜃𝑢𝑔 

Needed for on-line 

operation of the 

submodule. 
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submodule) 

Predicted profile of the 

non-controllable electricity 

consumption, predicted 

profile of the non-

controllable thermal load 

(for on-line operation of 

the submodule) 

(𝐸𝑒,𝑛𝑐)N (𝐸𝑡,𝑛𝑐)N 

Needed for the MPC 

module on the microgrid 

level 

 

Since the non-controllable consumption model is based on artificial neural networks (as 

presented in the following section 4.3) the predictions sometimes tend to reach impossible 

values, e.g. slightly negative electrical energy values during the night when there is no PV 

panels production. The structure of neural networks prohibits the model to incorporate 

exact boundaries on the model outputs, therefor all generated predictions are post-

processed in order to avoid such unexpected values.  

4.3 Methodology 

Non-controllable electrical and thermal energy consumption on the microgrid level are 

modeled using artificial neural networks with the same procedure as described for the 

M.PE.3 module, in Section 3.3.  

5 Submodule for identification of controllable load 

parameters (M.PE.6) 

5.1 Theory 

Controllable loads include the following units: 

 hot water boilers, 

 water chillers. 

Both units can be described as a simple heat storage system with one heat tank. For all cases 

the medium storage can be considered of a fixed volume. The energy content of the storage 

is indicated by temperature of the medium. 

 

Figure 5.1: Simple physical model of controllable loads
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Water boiler: η ~ 100% 

Water chiller: η > 100% (COP) 

Water boiler: Eout≠0 

Water chiller: Eout≠0 

5.2 Inputs 

 Historical controllable load measured state, xI 

o [Theatstorage] = °C 

 Historical controllable load energy input (electricity), Ein 

o [Ein] = kWh 

 Historical controllable load energy output, Eout 

o [Eout] = kWh 

 Room temperature measurement, Tenv  

o [Tenv] = °C 

 Parameter of the COP model of the chiller (if relevant), COP 

Resolution: 1/min 

The temperature of the heat tank is: 

 buffer tank temperature measured at middle height of the tank in case of the water 

chiller 

 equivalent temperature calculated based on three measurement (top, middle, 

bottom) in case of water boiler. 

5.3 Outputs 

 Simplified model of the controllable load, θI 

o Specific heat for the heat tank 

 [Cht] = kWh / °C 

o Energy loss per second in the function of temperature difference of the heat 

tank and its environment 

 [Ploss(ΔT)] = W/°C 

5.4 Internal parameters 

Internal parameters: 

 stepping - dimensionless 

o Some controllable loads have more than one input power levels, e.g. one 

room with four individually controlled heaters. Stepping means the number 

of the possible power levels for the controllable loads. (supposing 

equidistant power levels). 
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 [Pstepping] = kW 

o The power value for one equidistant power level. 

 [Tplus_physical] = °C – absolute 

o Absolute maximum temperature level for the unit (physical limit or 

operation requirement). 

 [Tminus_physical] = °C – absolute 

o Absolute minimum temperature level for the unit (physical limit or 

operation requirement). 

 type = {chiller, boiler} 

o Type of the controllable load. 

5.5 Frequency of submodule calls 

The submodule is planned to be called once per year. 

5.6 Algorithm 

The operation of this module has the purpose of periodically recalibrating several 

parameters of these systems. After a longer period (e.g. yearly) Ploss has to be recalculated 

based on historical data. 

5.6.1 Initial parameter and output setup 

All initial values must be entered manually or their determination requires a manually 

controlled identification process.  

Parameter Water chiller Water heater 

Tplus_physical 
comfort limit based on the unit’s 

documentation 
based on the unit’s documentation 

Tminus_physical 
freeze limit based on the unit 

documentation 
based on the unit’s documentation 

stepping based on the unit documentation based on the unit documentation 

Pstepping based on the unit documentation based on the unit documentation 

Cht 

volume of the tank (m
3
) * density of 

water (1000 kg/m
3
) * specific heat 

of water (4.2 kJ/kg°C) 

volume of the tank (m
3
) * density of 

water (1000 kg/m
3
) * specific heat of 

water (4.2 kJ/kg°C) 

Pin,min based on the unit’s documentation based on the unit’s documentation 

Pin,max based on the unit’s documentation based on the unit’s documentation 

Ploss identification process identification process 
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5.6.2 Identification process 

Identification procedure for Ploss: 

1. search the historical data for idle periods (no input and no output) 

2. check the idle periods for one hour long intervals with different ΔTs 

3. during the idle period: 

a. calculate the average temperature difference between the heat tank and 

the environment –> ΔT   

b. calculate the temperature change during that idle period –> ΔE = Cht(T2-T1) 

c. calculate the time interval for the idle period –> tidle 

4. Ploss(ΔT)= ΔE/ tidle 

5. based on the losses at different ΔTs one can create a polynomial function to more 

precisely describe the losses  

6 Submodule for domestic hot water energy consumption 

prediction (M.PE.5) 

6.1 Introduction 

Domestic hot water tank is controllable load. Water in tank is heated from two sources: 

immersed tubular heat exchanger and electric water heater. This way water can be heated 

from two different energy sources. Heat to exchanger is supplied from microgrid boiler 

room. Energy transferred is measured with heat meter. Heat transfer can be switched on or 

off with switching the circulation pump. 

Electric heater which can heat water with electric energy. Electric heater has three power 

stages which are switched independently from each other. 

 Stage 1: 15 kW 

 Stage 2: 15 kW 

 Stage 3: 5 kW 

 Total: 35 kW 

Consumed energy is measured with electric meter. 

Each heat source is described with mathematical model. State of the energy accumulated in 

tank is described with equivalent temperature. 

The physical model, algorithm and identification procedure is explained and defined in 

chapter: Submodule for identification of controllable load parameters (M.PE.6).
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6.2 Inputs 

 Efficiency of electric water heater is: ηel ~ 100%. 

 Efficiency of heat exchanger was measured and is: ηex ~ 90%. 

 Historical energy input (electricity), [Ein_el] = kWh 

 Historical thermal energy input, [Ein_th] = kWh 

 Historical energy output – hot water consumption, [Eout] = kWh 

 Room temperature measurement, Tenv is constant: ~ 20 °C 

 Temperature at height 1: [TDHW_1] = °C 

 Temperature at height 2: [TDHW_2] = °C 

 Temperature at height 3: [TDHW_3] = °C 

 Domestic hot water state: [DHWstate] = dimensionless 

Energy consumption is calculated from measured water flow 

Resolution: 15 min 

6.3 Outputs 

 The state variable of DHW tank  - historical equivalent temperature, [TDHW] = °C 

 Simplified model of the DHW tank, θDHW 

 Constraints:  

a. Minimum and maximum allowed temperature values 

b. Maximum energy exchanged using the heat exchanger: Pmax_th = kWh 

c. Maximum energy exchanged using the heaters (combined): Pmax_el = kWh 

d. Antilegionella schedule 

Legionella protection will be done as a temporary rise of DHW setpoint temperature. This 

shall be done weekly according to provided schedule. 

 

Energy Balance 

The well-mixed assumption implies that all water in the tank is at the same temperature. To 

calculate the water temperature, the model analytically solves the differential equation 

governing the energy balance of the water tank: 

 

cp = specific heat of water 

T = temperature of the tank water 

t = time 

qnet = net heat transfer rate to the tank water 
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The net heat transfer rate is the sum of gains and losses due to multiple heat transfer 

pathways. The imported and exported energy is measured with calorimeter. The losses 

linear depended of equivalent temperature of the tank and environment temperature. 

Qin – Qout = m*c*dT 

Qin = Qexch + Qheater – (Qloss + Qload) = m*c*dT 

 

Domestic hot water consumed is measured with three flow meters. The sum of energy is 

calculated from measured flow and temperature of water at the top of tank: 

Qload = q*c*( TDHW_3 – Tfresh) 

Tfresh – Fresh tap water at constant temeperature of 15 °C 

 

Model 

DHW tank simplified model is linear and incorporates heat losses of the tank. 

Energy loss: [Ploss(ΔT)] = W/°C 

Energy loss per second in the function of temperature difference of the heat tank and its 

environment: 

Ploss(ΔT)= ΔE/ tidle 

The model is stored in MySQL database in JSON format: 

{‘A’:’[0.0025]’; ‘B’:’[1,1,-1]’} 

 

The heat exchanger 

Having maximum power for the current conditions (supply temperature, water temperature 

in the tank...) is not enough. The algorithm needs the formula and coefficients, so maximum 

heat exchange can be calculated for any conditions on the prdiction horizon. 

Qexch = k*q*(Tsupply - TDHW) 
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Executive summary 

Integrated energy management of buildings and grids installed with the 3Smart project is on the side 

of buildings divided into three vertical levels – zone level, central HVAC system level and microgrid 

level. In each of these levels the energy management algorithms are classified into three parts – (i) 

prediction and estimation, (ii) model predictive control, and (iii) equipment interfacing -- and the 

algorithms are implemented via a sequence of modules. 

The modules are designed, commissioned and tested on different pilot buildings in the Danube 

region. 

Within this deliverable the focus is put on microgrid level model predictive control.  

The microgrid level model predictive control module is presented via corresponding interfacing 

tables that explain what data are used by it as inputs and what are its output data. The algorithms 

behind are in more detail explained in the annexed document. 
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1 Introduction 

Within the 3Smart project the following model predictive control module is designed, commissioned 

and tested on the microgrid level: 

M.MPC.1 – module for model predictive control that in off-line operation interacts with other MPC 

modules and decides on building optimal daily operation and the contracted amount of building 

flexibility, and in on-line operation decides on the controllable generation, storage or loading entities 

actuation on the microgrid level as well as on controllable electricity consumption pricing on the 

lower levels. 

In the following chapter the module is presented with its interface tables showing which data it uses 

as inputs and which data it provide as outputs to be at the disposal to other submodules. Detailed 

explanations of algorithms behind it are provided in Annex 1. It inherits the developments presented 

in the previously delivered 3Smart document D4.2.1 (related to model predictive control) and 

additionally shows its further improvements based on feedback from the pilot buildings. 

Source and sink for the data used by the module is a properly structured 3Smart database. Its 

structure in the part concerned by the module is provided in Annex 2. 

2 M.MPC.1 modules 

M.MPC.1 module is used for model predictive control that in off-line operation interacts with other 

MPC modules and decides on the optimal building daily operation and the contracted amount of 

building flexibility, and in on-line operation decides on the controllable generation, storage or 

loading entities actuation on the microgrid level again in interaction with lower-level MPC modules 

and in interaction with the short-term grid-level modules. 

M.MPC.1 module is tested in all pilot buildings of 3Smart where it may be constituted considerably 

differently based on available control points and based on the fact whether only controllable 

electricity consumption from HVAC or both controllable electricity and heat affect the microgrid level 

operation.  

In all cases M.MPC.1 interacts in off-line operation with the central HVAC system off-line MPC 

(HVAC.MPC.1 or HVAC.MPC.2) and with the long-term grid-side modules (see D5.4.3), while in on-

line operation it interacts with the central HVAC system on-line MPC and with the short-term grid-

side modules. 

On UNIZGFER building M.MPC.1 controls the battery storage system, the same holds for HEP, Strem 

retirement and care centre and EPHZHB buildings. In Idrija M.MPC.1 controls the CHP unit and the 

heating in domestic hot water tank by heat and electricity. In Idrija M.MPC.1 receives predicted 

controllable heat from the central HVAC level, unlike all other sites where the central HVAC level 

provides the predicted controllable electricity consumption to M.MPC.1. In Strem school M.MPC.1 

does not control any device, just interconnects the prices and demand response conditions from the 
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grid modules towards the central HVAC MPC. In EON building M.MPC.1 controls power production 

from the photovoltaic system and also the electric heaters in several rooms.   

The module interface is defined in Table 2.1 and Table 2.2. 

Table 2.1: Model predictive control module for microgrid energy flows control 

Variable name Variable annotation Variable description 

Module inputs 

Cumulative predicted controllable 

energy consumption that needs to be 

served by the microgrid; electricity and 

heat 

𝐸𝐿, 𝐸𝐻 
 

Energy inputs optimized within 

the HVAC level MPC 

Grid price conditions 𝑐𝐷𝐴 Prices and conditions obtained 

from the distribution grid/grids  

Prediction of the overall non-

controllable electricity/heat/gas 

consumption profile 

𝐸𝐿,𝑛𝑐, 𝐸𝐻,𝑛𝑐 , 𝐸𝑔𝑎𝑠,𝑛𝑐  

 

Prediction of the overall controllable 

generation profile of electricity/heat 
𝐸𝐿,𝑐, 𝐸𝐻,𝑐 

 

Parameters of the battery/batteries 

model, if exist 
𝜃𝐵𝐴𝑇  

 

Battery/batteries state of charge, if 

exists SoC 

 

Internal states of controllable loads, if 

exist (e.g., representative temperature 

in the domestic hot water boiler or in 

electric heaters controllable room) 

𝑥 

 

Controllable loads state limits, if exist 

(e.g., upper and lower limit of the 

domestic hot water boiler or in electric 

heaters controllable room) 

𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥  

 

Controllable loads energy conversion 

model, if exist (e.g. power to heat 

model in the domestic hot water boiler 

or refrigerator) 

𝜃cont 
 

State of the heat storage, if exists (e.g., 

representative temperature of the heat 

tank) 

𝑇hs 

 

Parameters of the heat storage model 𝜃hs  

Parameters of the energy conversion 

units model, if exist (e.g., CHP) 

𝜃ec  

Prediction of usage conditions of 

controllable loads, if applicable (e.g. 

temperature of the cold water supply in 

the domestic hot water tank and profile 

of hot water usage)  

𝑑cont 

 

Prediction of maximum energy inputs 

from the photovoltaic system PPV,max 

Obligatory needed when power 

production from the 

photovoltaic system is 
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controllable, otherwise can be 

merged with non-controllable 

electricity consumption 

Maximum power price 𝑐Pmax  

Day-ahead prices 𝑐𝐷𝐴  

Intra-day prices 𝑐𝐼𝐷,penal, 𝑐𝐼𝐷,incent 

If not provided along the entire 

prediction horizon, considered 

to be equal to 1.2c_DA 

Storage degradation price cBatt  

Table 2.2 – Module outputs – should be  separate table 

Module outputs 

Profile of the energy exchange with 

battery/batteries storage 𝐸𝐵𝐴𝑇  

The value valid for the first 

sampling period is to be 

transmitted to the interface 

module 

Profile of the energy command for 

controllable load actuation 𝐸𝐿,𝑐∗
 

For controllable loads 

continuous energy commands 

are generated which are then 

transferred to on-off on the 

interface submodule  

Profile of the energy conversion units 

actuation 
𝐸ecu 

E.g., CHP command for heat 

generation with electricity as 

the side-product or vice versa 

Local characterization of the value 

function of the optimization around the 

planned profile of controllable loads 

E
EL

, E
H 

𝐽∗(𝐸𝐿 , 𝐸𝐻) 

This local characterization is 

transmitted back to the zone 

and central HVAC level 

(constitutes of price 

coefficients and polytopic 

localization) 

Energy exchange profiles with the grid 

and other data for the grid: electrical 

energy, heat energy, gas energy, 

respectively 

𝐸𝐺 , 𝐸𝐺𝐻 , 𝐸𝐺𝑔𝑎𝑠
 

other conditions 

Conditions obtained through 

optimization of the interaction 

with distribution grid/grids 

Bibliography 
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Annex 1 -- Open software module for microgrid level consumption 

management – Model predictive control module 

Provided as a separate document. 

 

Annex 2 -- 3Smart database organization for open software module 

for the microgrid level management – Model predictive control 

module 
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Executive summary 

This D4.5.3 annex describes the optimal control module of the microgrid level. The module is 

positioned as the highest in the hierarchy and as a connection to the electricity distribution grid and 

energy markets. The core of the module is a model predictive control algorithm based on a linear 

program. It minimises the cost of building operation in various time-variable market conditions. It 

also manages energy storage operation while respecting the system limitations and their degradation 

in time. Renewable energy sources production and non-controllable building consumption is also 

taken into account based on weather forecast and historical data. Besides the control outputs for 

controllable microgrid elements, the outputs are also consumption pricing characterization sent 

towards lower hierarchy levels as a basis for overall building consumption adjustment to current 

market conditions and the predicted energy exchange with the electricity grid. 

The presented optimal control module represents the core concept for enabling active participation 

of buildings in energy markets, for providing ancillary services to the grid and in general for acting as 

a flexible prosumer in future smart cities and smart grids. 
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1. List of symbols 

In the remainder of this annex is the following notation employed. Variables that are indexed with 

respect to the time instant on the prediction horizon are denoted with subscript 𝑘 (e.g. 𝑥𝑘). Variables 

that are stacked over the prediction horizon are denoted in bold notation (e.g. 𝐱). 

Variables 𝐶 storage capacity 𝜂 storage efficiency 𝑥  state vector 𝐸  energy 𝐴  model state matrix 𝐵  model input matrix 𝑢  control vector 𝑑  disturbance vector 𝐽𝑀𝑃  maximum power cost 𝐽𝐷𝐴  day-ahead cost 𝐽𝐼𝐷𝑓  intra-day: day-ahead following cost 𝐽𝐵𝐷  battery degradation cost 𝜀  slack (mathematical, substitute) variable 𝑁  prediction horizon 𝑐𝐷𝐴  day-ahead prices 𝑇𝑑          sampling time 𝐹  constraints matrix (related to states) 𝐺  constraints matrix (related to inputs) 𝑤  constraints vector 

 

Subscripts 0  initial value min minimum value max maximum value dch discharging variable ch charging variable 𝐿 load variable 𝐺 grid variable 𝐻𝑉𝐴𝐶 variable 𝐵𝐴𝑇 battery variable 𝐵 boiler variable 𝐻 heater variable 𝐶𝐻𝑃 combined heating and power variable 𝑃𝑉 photovoltaic variable 𝑙 low level variable 𝑚 medium level variable ℎ high level variable 

BD         battery degradation 

Abbreviations 

CFTOC   constrained finite time optimal control 

MPC      Model Predictive Control 

CR          critical Region 

HVAC    Heating, ventilation, and air conditioning 

DA         Day-ahead 

EMS      Energy management system 

Superscripts  (𝑖) Hierarchical control iteration number ∗  optimal variable – exempt is 𝐸𝐺∗  that  

  refers to energy reference (day-ahead) 
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2. Introduction 

One of the main focuses of the 3Smart project is to derive a modular energy management tool for 

buildings that can be easily adapted to different configurations of the building and that adds upon 

the existing building automation system. This “3Smart” energy management concept consists of 

three levels put in the hierarchical organization: zones comfort level, central HVAC level and 

microgrid level, as shown in Fig. 2.1. Further on, each of the modules incorporates three different 

modules: prediction and estimation, optimal control and interfaces to the equipment (Fig. 2.2). Each 

of the considered pilot locations has specific configurations where all modules or levels are not 

necessarily present. High level of flexibility is therefore targeted to achieve easy modifications and 

adaptation to particular buildings. 

 
Figure 2.1: Functional diagram of the 3Smart EMS hierarchy on the building side. 

 

 
Figure 2.2: Modules schematics of the 3Smart EMS concept. 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 Annex 1 – Microgrid level model predictive control 
 

 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  4 
 

The deliverable presents the optimisation algorithm that takes into account renewable energy 

sources production profiles, total building electrical energy consumption, variable prices, electricity 

market and distribution grid conditions as well as different characteristics and requirements. This is 

all performed while considering electrical and thermal storages dynamics included through 

mathematical models of storages and physical system limitations.  

Finally, the building microgrid level is the highest level in the building-side EMS hierarchy. Microgrid 

level introduces a possibility to manage energy storages, controllable production and controllable 

loads on the building level to induce minimum energy costs with respect to the planned energy 

consumption and production profile while it makes the building an active entity on the smart grid or 

on the district-level smart energy distribution system, i.e. enables further modular build-up of the 

concept beyond the building and towards the smart city.  

The microgrid level optimally balances the electrical and possibly thermal energy flows from 

corresponding production and conversion units (photovoltaic arrays, small wind turbines, CHPs), to 

controllable or non-controllable loads while economically optimally engaging flows from/to storage 

units and from/to the utility grid in accordance with technical constraints on the flows that need to 

be respected. Sometimes also production units and non-HVAC consumption units may be 

controllable directly by the microgrid level which gives an additional flexibility (e.g., boilers for 

domestic hot water may be an example).  

Figure 2.7 presents the microgrid level optimisation process and connection with the real physical 

equipment. Information about energy requirements are provided from lower levels and electricity 

exchange terms are received from the aggregator. The MPC for microgrid energy flows takes into 

account the following information: non-controllable consumption profile prediction EL, local 

generation profile prediction from photovoltaics EPV and wind turbine EWT, storages state of charge 

(e.g. for batteries and hydrogen-based storage with fuel cells available, SoCBAT and SoCFC), 

controllable loads state and electricity exchange terms. While taking into account all the physical 

constraints of the available equipment, optimisation algorithm computes the required 

charge/discharge energy requirements for electrical storages, (e.g. batteries EBAT) and the energies 

for controllable loads, production and conversion units, which are further passed to information 

database and via available interface submodules finally delivered as reference values for targeted 

power converters or on-off switch commands for the loads. In standalone operation, microgrid 

simply uses available storages for buying at low price and selling at high price while satisfying load 

requirements. In hierarchically interconnected operation, microgrid level transforms electricity prices 

towards lower hierarchy levels by smart storages, loads and production units actuation. 

The balancing of available power production with the requirement of building electrical energy 

consumption in variable electricity market scenarios and with available energy storages is performed 

by model predictive controller for energy flows management. 
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Figure 2.7: Microgrid level optimal control concept. 

Table 2.1: Model predictive control module for microgrid energy flows control 

Variable name Variable annotation Variable description 

Module inputs 

Cumulative predicted controllable 

energy consumption that needs to be 

served by the microgrid; electricity and 

heat 

𝐸𝐿, 𝐸𝐻 
 

Energy inputs optimized within 

the HVAC level MPC 

Grid price conditions 𝑐𝐷𝐴 Prices and conditions obtained 

from the distribution grid/grids  

Prediction of the overall non-

controllable electricity/heat/gas 

consumption profile 

𝐸𝐿,𝑛𝑐, 𝐸𝐻,𝑛𝑐 , 𝐸𝑔𝑎𝑠,𝑛𝑐  

 

Prediction of the overall controllable 

generation profile of electricity/heat 
𝐸𝐿,𝑐, 𝐸𝐻,𝑐 

 

Parameters of the battery/batteries 

model, if exist 
𝜃𝐵𝐴𝑇  
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Battery/batteries state of charge, if 

exists SoC 

 

Internal states of controllable loads, if 

exist (e.g., representative temperature 

in the domestic hot water boiler or in 

electric heaters controllable room) 

𝑥 

 

Controllable loads state limits, if exist 

(e.g., upper and lower limit of the 

domestic hot water boiler or in electric 

heaters controllable room) 

𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥  

 

Controllable loads energy conversion 

model, if exist (e.g. power to heat 

model in the domestic hot water boiler 

or refrigerator) 

𝜃cont 
 

State of the heat storage, if exists (e.g., 

representative temperature of the heat 

tank) 

𝑇hs 

 

Parameters of the heat storage model 𝜃hs  

Parameters of the energy conversion 

units model, if exist (e.g., CHP) 
𝜃ec  

Prediction of usage conditions of 

controllable loads, if applicable (e.g. 

temperature of the cold water supply in 

the domestic hot water tank and profile 

of hot water usage)  

𝑑cont 

 

Prediction of maximum energy inputs 

from the photovoltaic system 

PPV,max 

Obligatory needed when power 

production from the 

photovoltaic system is 

controllable, otherwise can be 

merged with non-controllable 

electricity consumption 

Maximum power price 𝑐Pmax  

Day-ahead prices 𝑐𝐷𝐴  

Intra-day prices 𝑐𝐼𝐷,penal, 𝑐𝐼𝐷,incent 

If not provided along the entire 

prediction horizon, considered 

to be equal to 1.2c_DA 

Storage degradation price cBatt  

Table 2.2 – Module outputs – should be  separate table 

Module outputs 

Profile of the energy exchange with 

battery/batteries storage 𝐸𝐵𝐴𝑇  

The value valid for the first 

sampling period is to be 

transmitted to the interface 

module 

Profile of the energy command for 

controllable load actuation 𝐸𝐿,𝑐∗
 

For controllable loads 

continuous energy commands 

are generated which are then 

transferred to on-off on the 
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interface submodule  

Profile of the energy conversion units 

actuation 
𝐸ecu 

E.g., CHP command for heat 

generation with electricity as 

the side-product or vice versa 

Local characterization of the value 

function of the optimization around the 

planned profile of controllable loads 

E
EL

, E
H 

𝐽∗(𝐸𝐿 , 𝐸𝐻) 

This local characterization is 

transmitted back to the zone 

and central HVAC level 

(constitutes of price 

coefficients and polytopic 

localization) 

Energy exchange profiles with the grid 

and other data for the grid: electrical 

energy, heat energy, gas energy, 

respectively 

𝐸𝐺 , 𝐸𝐺𝐻 , 𝐸𝐺𝑔𝑎𝑠
 

other conditions 

Conditions obtained through 

optimization of the interaction 

with distribution grid/grids 

 

3. Mathematical model of energy storages 

When observing microgrid with a sampling time large enough to disregard the transients on its 

energy links, it is sufficient to observe the energy balancing condition and storages dynamics. 

Dynamics of a microgrid storage unit are modeled via its state-of-charge (SoC): 𝑆𝑂𝐶𝑘+1 =  𝑆𝑂𝐶𝑘 − 1𝐶 𝜂 𝐸BAT,𝑘          (3-1) 

which describes how the SoC changes with applied charging or discharging energy (Ebatt) for the next 

sample time instant 𝑘 + 1. Variables 𝐶 and 𝜂 denote capacity and efficiency of the system. As shown 

in (3-2), energies and efficiencies are split to discharging and charging components ('dch' and 'ch' 

subscripts) such that 𝐸dch ≥ 0 and 𝐸ch ≤ 0. This is done to avoid high calculation complexity of a 

mixed-integer problem formulation for optimization of microgrid energy flows [1]. For the charging 

part, efficiency of 𝜂ch < 1 implies dissipated energy of the process as it is intuitively clear. For the 

discharging part, observed from the perspective of electrical storage, 
1𝜂dch

≥ 1 means that more 

energy is sent from the electrical storage than it reaches the microgrid. The storage dynamics 

equation (1) are valid for all types of microgrid storages, assuming that the transients are far less 

(one order of magnitude or more) than the sample time interval. Therefore, it is valid for batteries 

and fuel-cells but also applicable for various thermal storages.  𝑆𝑂𝐶𝑘+1 =  𝑆𝑂𝐶𝑘 − 1𝐶 ( 1𝜂dch
𝐸dch,𝑘 + 𝜂ch𝐸ch,𝑘),       (3-2) 

For the MPC implementation, (3-2) is formulated as: 𝑥𝑘+1 =  𝐴𝑥𝑘 + 𝐵𝑢𝑘,          (3-3) 

where 𝑥𝑘 is a storages SoC vector, 𝑢𝑘 is a vector of energies exchanged between the microgrid and 

the storage systems between time instants 𝑘  and 𝑘 + 1 , 𝑢 = [𝐸dch, 𝐸ch]𝑇 ,  and 𝐴  and 𝐵  are 

corresponding model matrices. 
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In particular for batteries, both 𝜂ch and 𝜂dch include battery and power converter efficiency and can 

be considered constant. The charging and discharging energy, i.e. power within the sampling time 

interval, is a subject to physical limitations dictated by power converter limitations and battery 

conditions (SoC-charging current characteristics). Mathematically, this is included in the optimisation 

problem simply as: 𝑢min ≤ 𝑢𝑘 ≤ 𝑢max,           (3-4) 

while storage SoC operation between capacity limits (e.g. 10% and 100%) as: 𝑥min ≤ 𝑥𝑘 ≤ 𝑥max.           (3-5) 

In general, the microgrid energy balance condition (energy conservation law on the microgrid link) 

implies that sum of production, consumption and storage energies equal to zero at all times, i.e. all 

the produced energy is either consumed, saved to storages or sold back to the utility grid. 

Mathematically, this is described as the condition satisfied at every discrete time step 𝑘: 𝐸G,𝑘 = 𝐸L,𝑘 − 𝟏𝑑𝑇𝑑𝑘 − 𝟏𝑢𝑇𝑢𝑘,         (3-6) 

where 𝐸G,𝑘 is the energy exchanged with the utility grid, 𝐸L,𝑘 is the energy supplied to the load 

(building consumption), 𝑑𝑘  is a vector of energy productions of different generation units in the 

microgrid and 𝟏𝑑 and 𝟏𝑢  are appropriately sized vectors of ones introduced to mathematically 

represent the summation of all production contributors (e.g. photovoltaic arrays) and controllable 

loads (e.g. HVAC system). 

 

4. Interaction of building-side and grid-side EMS 

Electrical energy market and distribution grid are independent systems entities where each of them 

can provide the building certain market conditions related to exchange of energy between the 

building and the grid. The hierarchical control system on the building side takes into account the 

announced market conditions and decides how to control the building climate and internal building 

energy flows through all the levels (zones, central heating/cooling medium preparation, microgrid) in 

the optimal way such that minimum-or-no discomfort are established at minimum overall price for 

the building. 

 

A common time base of operation (i.e. sampling time) is defined as the time interval within which the 

cost does not change. Intra-day requests for the regulation are possible to deliver within the next 

sampling time, which is chosen in respect to available computational resources (data acquisition, 

server computer power, solver license etc.). 

 

The building-side EMS optimizes the comfort and the overall economic cost of the energy exchange 

with the utility grids. Comfort is transformed into energy and finally into cost through suitable 

weighing factors and model-based transformation. 
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In this section it is assessed what are the different parts of the cost for energy exchange profile 

between the building and the grid, considering the existence of market and distribution grid entities. 

These parts are all put individually to the model predictive control form. But firstly, a common time 

base of operation needs to be assessed in the sense of time intervals within which the cost does not 

change. We refer to it as the polling interval and its duration is named the common sampling time. 

Instantaneous response to the grid requesting for a change in building power consumption at any 

moment is left out of scope. The slowest possible reaction time to the emergency event for the 

configuration considered here amounts one common sampling time, which is chosen in respect to 

available computational resources (data acquisition, server computer power, solver license etc.) for 

all pilot sites. 

 

The economic parameters for defining the cost for energy exchange with the grid that are to be 

taken into account in the building-side EMS are given in the sequel. These parts are all integrated in 

the MPC form. 

 

4.1 Cost of maximum power 

This is usually calculated on a monthly basis. In certain day of the month, only the increase of the 

maximum power compared to maximum registered power from the previous days in the month is 

penalized, at the beginning of the month the initial maximum power is set to zero. This cost is only 

charged for power taken from the distribution network, not for power sold.  

 

The optimisation objective is therefore to keep the consumed energy as close as possible to 0. This 

would only be possible of course for the real case of zero-energy building and in reality certain 

deviation is necessary for normal operation of the building. Mathematically, this is represented as: 

 𝐽𝑀𝑃 = 𝑐Pmax𝜀1,           (4-1) 

s.t.  

 

𝜀1 ≥ 0 𝜀1 ≥ 𝐸𝐺 − 𝜀2 𝜀2 = max 𝐸𝐺1,…,𝑁 

,, 

where 𝜀1 , 𝜀2  are so-called slack variables (substitute variables) required for mathematical 

representation. Variable 𝜀2 is the maximum of total energy consumption required by the building, 

over the prediction horizon (worst case), obtained from the previous consumption for current 

month. Relation (4-1) is graphically illustrated in Fig. 4.1., which shows that up to 𝜀2, the cost 𝜀1, is 

maintained the same as this is already the price that has to be paid this month as that peak 

consumption already occurred in the past. If additional consumption is required to maintain the 

building operation, the cost 𝜀1 increases linearly with coefficient of 𝑐Pmax and the overall optimisation 

cost 𝐽𝑀𝑃 increases. The MPC problem (minimisation of the cost function while respecting the 

constraints) tends to keep 𝜀1 as low as possible. Economically, this means the lowest cost of 

operation with regard to the maximum power criterion. 
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Figure 4.1: Maximum power cost function sketch. 

 

4.2 Cost of energy, day-ahead 

The aggregator is a market entity and it participates in the market by bidding demand profile (e.g., 

24-hour kWh/h blocks) for a certain day-ahead (DA) price (here we assume all bids are successful). 

DA prices are based on power exchange data (HUPX, SIPEX, EEX). They will be used by building-side 

EMS for the optimization process, i.e. for cost minimization which results in optimal demand profiles 

for given prices. The values for day-ahead prices and the resulting demand profile need to be known 

12 hours prior to start of the observed day, meaning from 12 to 36 hours before the dispatch 

between the two midnights. It should be mentioned that the building-side EMS receives day-ahead 

energy prices (24 prices, for each hour). The building will (e.g. at 9:00 each day) send to the 

aggregator the energy consumption profile it would apply between the following two midnights in 

case of a fixed price determined as the average price for the previous day, such that the aggregator 

can better bid on the market and finally send prices to the building/buildings.  

 

Day-ahead building energy consumption is the energy required for internal building processes and 

for balancing between production, consumption and storages. Mathematically, it is put to a form of 

minimising the energy bought from the utility grid:  𝐽𝐷𝐴 = 𝑐𝐷𝐴𝑇 𝐸G,           (4-2) 

s.t.  

 

x = 𝑨𝑥0 + 𝑩u 

xmin ≤ x ≤ xmax 

umin ≤ u ≤ umax 

, 

where 𝐸𝐺  can also have negative sign, referring to the process of selling the excess energy back to 

the grid. The expression (4-2) also incorporates storage dynamics and physical limitations (storage 

capacity and allowed charging/discharging characteristics). If the market price 𝑐𝐷𝐴 is a constant 

vector, (4-2) yields control variables for energy-optimal building operation. The building-side EMS 

needs to obey the DA profile it declared. In case it is not able to due to some unforeseen events later 

in the day, it needs to participate in the intra-day market to compensate for the incorrect DA 

forecast. 
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4.3 Intra-day pricing 

At the intra-day market, the building-side EMS needs to pay for energy which is missing/surplus from 

the profile announced day-ahead. There are two options for valorising the intra-day prices related to 

this in the project: i) simpler one: values will be taken as day-ahead energy prices multiplied by a 

factor of 1.2 (20% higher) and thus the cost for the hour when the deviation occurs will be expressed 

as: (energy in the hour * DA hour price)+(absolute value of energy deviation from DA * 1.2 DA hour 

price); ii) instead of DA*1.2 existing intra-day prices are used (considered as forecasts and used as 

historical values from markets with available intra-day historical price data). 

 

The mathematical representation for the case of 20% higher price is: 𝐽𝐼𝐷𝑓 = 1.2𝑐𝐷𝐴𝑇 ‖𝐸G − 𝐸G∗‖1,         (4-3) 

which puts a 20% higher cost on following the reference trajectory 𝐸G∗ of the day-ahead production. 

Since the price in (4-3) is higher than in (4-2), the optimisation will give priority to intra-day following 

than to reduction of consumption unless the possible reduction itself gives higher savings than those 

20%. An exemplary consumption profile is illustrated in Fig. 4.2. 

 
Figure 4.2: Exemplary day-ahead building energy consumption profile. 

 

 

4.4 Flexibility provision towards the grid 

The flexibility provision towards the grid follows the logic from D5.4.3 (grid-side modules 

description). 

 

4.5 Costs of battery degradation 

As always defined by manufacturers, batteries have limited duration and life span, which is 

expressed as number of charging/discharging cycles. This can be put to a form of the exact price for 

battery degradation per charging/discharging, or in terms of MPC framework put as part of the cost 

function: 𝐽𝐵𝐷 = 𝑐𝐵𝐷𝑢𝑘,               (4-5) 

where price 𝑐𝐵𝐷 depend on battery type and manufacturer. For more details about the approach, see 

[6], from which the prices for LiFePO4 batteries are chosen as 𝑐𝐵𝐷 = 0.0784 €𝑘𝑊ℎ.  
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5. Optimisation problem formulation 

Microgrid optimisation submodule and the corresponding MPC algorithm for energy flows 

management outputs a decision when to buy from or sell energy to the utility grid and in which 

amounts, i.e., when to charge and discharge storages. The overall optimisation problem is a 

constrained finite time-optimal control problem based on a linear program [3]. As described before, 

it is a complex function of different contradictory requirements. The complete objective function of 

the microgrid MPC submodule incorporates parts from sections 4.1-4.5: 𝐽 = 𝐽𝑀𝑃 + 𝐽𝐷𝐴 + 𝐽𝐼𝐷𝑓 + 𝐽𝐼𝐷𝑑 + 𝐽𝐵𝐷.         (5-1) 

The microgrid MPC optimization problem is posed as follows: 

𝐽 = ∑ (𝜀1,𝑘 + 𝑐𝐷𝐴,𝑘𝐸G,𝑘 + 1.2𝑐𝐷𝐴,𝑘‖𝐸G,𝑘 − 𝐸G,𝑘∗ ‖1−5𝑐𝐷𝐴,𝑘‖∆𝐸G,𝑘∗ ‖1 + 100𝑐𝐷𝐴,𝑘‖𝐸G,𝑘 − 𝜀3,𝑘‖1 + 𝑐𝐵𝐷,𝑘𝑢𝑘)𝑁−1
𝑘=0  

s.t.  

 

 𝛆1 ≥ 0 𝛆1 ≤ 𝐜Pmax(𝐄G − 𝛆2) 𝛆2 = max 𝐄G1,…,𝑁 

x = 𝑨𝑥0 + 𝑩u   𝐄G,𝑘 = 𝐄L − 𝟏𝑑𝑇𝐝 − 𝟏𝑢𝑇𝐮,

 xmin ≤ x ≤ xmax 

umin ≤ u ≤ umax 𝜺3 = 𝐄𝐺∗ + ∆𝐄𝐺∗  

,, 

where bold notation represents vectors and matrices stacked over the prediction horizon. In 

particular, for e.g. microgrid configuration consisted of HVAC, electric heaters, boiler, CHP, battery 

storage and various non-controllable loads, the energy balance equation is: 𝐸𝐻𝑉𝐴𝐶 + 𝐸𝐻 + 𝐸𝐵 + 𝐸𝐶𝐻𝑃+𝐸L = 𝐸𝑃𝑉 + 𝐸BAT + 𝐸G,       (5-2) 

from which the 𝐸G is derived, or (5-2) is simply put as a constraint to (5-1). Vector 𝑢𝑘 is comprised of 

energies from (5-2) related to controllable systems and 𝑑 of ones related to non-controllable 

systems. 

 

6. Hierarchical coordination of the modules 

All of the 3Smart modules can operate independently and in case of absent modules. However, when 

put to coordinated operation, the savings are significantly increased as proven in [2] (additional 

savings of 15%) for the case of zone and microgrid modules. This is achieved only by further 

mathematical (software) adjustments, without additionally required hardware or installations.  

A significant feature in building applications is observed in a proximity of energy and economical 

optimum. The coordination method used in 3Smart exploits the proximity premise for dividing a 
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problem into hierarchy levels suitable for fast convergence from low level optimization criterion to 

the higher one. With parametric formulation, both criteria are expected in the same or adjacent 

critical region (CR) while shifting between them is trivial in complexity and time requirements. Lower 

hierarchy level control variables are treated as a parametric disturbance of the higher hierarchy level 

problem and further transformed towards global optimization criterion through a parametric 

problem value function. A critical region is a subset of parameters that yield the same set of active 

constraints, i.e., constraints that are satisfied with equality sign in the optimal solution. The 

hierarchical decomposition keeps the modules and corresponding technologies apart and 

independent. The implementation is therefore eased with minimal on-site modifications and 

different technologies are interconnected only by means of provided price and consumption signals.  

A common approach in joining the MPC problems is by concatenating the matrices and the cost 

functions of each problem into one larger control problem formulation subject to augmented model 

and joint constraints. In 3Smart EMS concept, level separation is retained and the coordination is 

performed by exchanging information about optimized energy consumption price and consumption 

profiles, which are respected in both level operation. Parametric coordination of hierarchy levels 

exploits the multiparametric MPC and CRs with simple explicit control law. The original algorithm for 

multiparametric MPC was proposed in [2] and its segments are utilized for hierarchical coordination. 

The distinction is that only a single CR is determined at one iteration and no additional partitioning of 

the parameter space is performed. The 3Smart EMS modules are generally represented as in the 

sequel. 

 Zone comfort MPC as low-Level (LL) problem: 𝐽𝑙∗ = min𝑢𝑙 𝐽𝑚∗ (𝑢𝑙) + 𝑓𝑙(𝑢𝑙 , 𝑥𝑙0) 𝐺𝑙𝑢𝑙 ≤ 𝐹𝑙𝑥𝑙0 + 𝐸𝑙  
(6-1)   

  

 HVAC level MPC as mid-level (ML) problem: 𝐽𝑚∗ = min        𝑢𝑚 𝐽ℎ∗(𝑢𝑚) + 𝑓𝑚(𝑢𝑙 , 𝑢𝑚, 𝑥𝑚0) 𝐺𝑚𝑢𝑚 ≤ 𝐹𝑚𝑥𝑚0 + 𝐺𝑚𝑙𝑢𝑙 + 𝐸𝑚 
(6-2)   

 

 Microgrid MPC as high-level (HL) problem 𝐽ℎ∗ = min𝑢ℎ 𝑓ℎ(𝑢ℎ, 𝑢𝑚, 𝑥ℎ0) 𝐺ℎ𝑢ℎ ≤ 𝐹ℎ𝑥ℎ0 + 𝐺ℎ𝑙𝑢𝑚 + 𝐸ℎ 
(6-3)   

Initialization step sets the following: 𝐽𝑚∗(−1) = ‖∙‖1, 𝐽ℎ∗(−1) = ‖∙‖1, 𝐶𝑅𝑚∗(−1) = ℜ𝑛𝑢𝑙, 𝐶𝑅ℎ∗(−1) = ℜ𝑛𝑢𝑚. 

The algorithm executes problems (6-1), (6-2) and (6-3) iteratively. Each iteration (𝑖 = 0,1, … , 𝑚) 

consists of the following 4 steps: 

1. LL with 𝐽𝑚∗(𝑖−1)
 and 𝑢𝑙 ∈ 𝐶𝑅𝑚(𝑖−1) → 𝑢𝑙∗(𝑖)

   

2. ML with 𝐽ℎ∗(𝑖−1)
 , 𝑢𝑙 = 𝑢𝑙∗(𝑖)

and 𝑢𝑚 ∈ 𝐶𝑅ℎ(𝑖−1) → 𝑢𝑚∗(𝑖)
 

3. HL with 𝑢𝑚 = 𝑢𝑚∗(𝑖) → 𝐶𝑅ℎ∗(𝑖) (𝑢𝑚∗(𝑖)), 𝐽ℎ∗(𝑖)
, 𝑢ℎ∗(𝑖) (𝑢𝑚∗(𝑖)) 
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4. ML with 𝐽ℎ∗(𝑖), 𝑢𝑙 = 𝑢𝑙∗(𝑖)
 and 𝑢𝑚 ∈ 𝐶𝑅ℎ(𝑖) → 𝐶𝑅𝑚∗(𝑖) (𝑢𝑙∗(𝑖)), 𝐽𝑚∗(𝑖)

, 𝑢𝑚∗(𝑖) (𝑢𝑙∗(𝑖))   

Graphically, iterations through critical regions are presented in Fig. 6.1. The initial solution 𝑢𝑙∗ is 

shifted along the decreasing value of 𝐽𝑚∗  from (6-1) such that all physical and comfort constraints are 

satisfied, which is expressed by triggering the constraints from (6-2). Previous energy-optimal control 

inputs 𝑢𝑙∗ are now transformed to price-optimal ones 𝑢𝑙∗(𝑖)
, within the critical region 𝐶𝑅𝑚(𝑖−1)

. Finally, 

the price optimal higher level control signals 𝑢𝑚∗(𝑖)
 within the critical region are obtained from (6-2). 

The case of LL-ML iteration is graphically illustrated in Fig. 6.1.a. The same applies for ML-HL, and 

finally also for the whole path of LL → ML → HL → ML as in steps 1-4 above. 

The approach is based on the premises that the non-coordinated solution on the lower level is near 

the optimum achieved through coordination. In practice, the premise of solution proximity proved to 

be justified for the case of building connected to a variable price energy market. When such 

assumptions are compromised, the CR boundaries are hit before the zone level constraints and the 

solution is to be found outside the current CR. The procedure is then iteratively executed until the 

solution is found in the active CR where zone level constraints are triggered (Fig. 6.1.b) or microgrid 

constraints are activated (adjacent CR is non-existent).  

The number of levels (modules) can be arbitrary and iterations remain the same: start from the 

lowest, climb up to the highest and determine current optimizers with computed respective costs 

and critical regions from the previous iteration. On the highest level compute the new critical region 

and cost for the level below and go back through the levels by repeating that, up to the second 

lowest level. Then everything is set for the next iteration. 

 
Figure 6.1: Geometric representation of parametric coordination in the space of control vector: a) solution is inside the 

starting CR, b) iteration to a nearby CR. Parallel lines represent the cost function with higher density reflecting a smaller 

value. 
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7. Conclusion 

This annex describes a design procedure of a microgrid level MPC module of 3Smart building energy 

management system. The controller is designed to operate as a highest level in the hierarchically 

organized building energy management system. The MPC optimizes total energy and microgrid 

operation costs in presence of time-varying building consumption, renewables production, energy 

prices and demand response. Outputs of the MPC are storage reference energy profiles with chosen 

sampling time. 

The report also sets the outline for a coordinated hierarchical control of all levels of 3Smart building 

energy management system based on iterative approach with parametric MPC.  

Bibliography 

[1] M. Gulin, M. Vašak, M. Baotić, "Analysis of Microgrid Power Flow Optimization with 

Consideration of Residual Storages State", Proceedings of the European Control Conference 

2015, pp. 3131-3136, 2015. 

[2] V. Lešić, A. Martinčević, M. Vašak, "Modular energy cost optimization for buildings with 
integrated microgrid", Applied Energy, vol. 197, pp. 14-28, 2017. 

[3] J. B. Rawlings, D. Q. Mayne, "Model Predictive Control: Theory and Design", Nob Hill Publishing, 

Madison, Wisconsin, 2015 (download URL).  

[4] A. Martinčević and M. Vašak, D4.4.1 – Open software module for zones consumption 

management, University of Zagreb, Faculty of Electrical Engineering and Computing, 2017. 

[5] Borrelli F, Bemporad A, Morari M. Geometric algorithm for multiparametric linear programming. 

Journal of Optimization Theory and Applications, vol. 118, no. 3, pp. 515-540, 2003. 

[6] A. Parisio, E. Rikos, L. Glielmo, “A Model Predictive Control Approach to Microgrid Operation 

Optimization”, IEEE Transactions on Control Systems Technology, vol. 22, pp. 1813-1827, 2014. 

http://jbrwww.che.wisc.edu/home/jbraw/mpc/electronic-book.pdf


Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 – Final building-side energy management software module – interfacing, microgrid level 
 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  

 

Project Deliverable Report 

Smart Building – Smart Grid – Smart City 

http://www.interreg-danube.eu/3smart 

 

 

DELIVERABLE D4.5.3 

Final building-side energy management software module – 

Interfacing submodules for microgrid management 

 

Project Acronym 3Smart 

Grant Agreement No. DTP1-502-3.2-3Smart 

Funding Scheme Interreg Danube Transnational Programme 

Project Start Date 1 January 2017 

Project Duration 36 months 

Work Package 4 

Task 4.5 

Date of delivery Contractual: 30 June 2019 Actual: 30 June 2019 

Code name Version: 1.0 Final      Final draft       Draft  

Type of deliverable Report 

Security Public  

Deliverable participants University of Debrecen (UNIDEBTTK), Marko Baša (E3) 

Authors (Partners) Arpad Racz (UNIDEBTTK), Marko Baša (E3), Mario Vašak 
(UNIZGFER) 

Contact person Mario Vašak (UNIZGFER) 

  

Abstract 

(for dissemination) 

The deliverable gives an overview of modules that interface 

energy exchange commands from the microgrid level model 

predictive control to building actuators – here the input/output 

data of the modules are provided and a detailed logic regarding 

modules operation is provided in the annexed document. 

Keyword List Interfacing Controllable Load, Interfacing Controllable Storage, 

Interfacing Controllable Generation, Battery System, Domestic Hot 

Water Tank, Photovoltaic System, CHP 

 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 – Final building-side energy management software module – interfacing, microgrid level 
 

 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  1 
 

Revision history 

 

Revision 
Date Description 

Author 

(Organization) 

v0.1 1 September 2018 
Initial version based on 

D4.2.1 
Mario Vašak (UNIZGFER) 

v0.2  15 January 2019 Updated version Mario Vašak (UNIZGFER) 

V0.3 19 June 2019 Updated version 

Arpad Racz (UNIDEBTTK), Marko 

Baša (E3), Mario Vašak 
(UNIZGFER) 

V1.0 30 June 2019 
Final quality-checked 

version 

Mato Baotić, 3Smart quality 
assessment manager, Mario 

Vašak (UNIZGFER) 
 

 

  



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 – Final building-side energy management software module – interfacing, microgrid level 
 

 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  2 
 

Table of Contents 

Executive summary ................................................................................................................................. 3 

1 Introduction ..................................................................................................................................... 4 

2 M.I.1 submodule ............................................................................................................................. 4 

3 M.I.2 submodule ............................................................................................................................. 5 

4 M.I.4 submodule ............................................................................................................................. 5 

5 M.I.5 submodule ............................................................................................................................. 6 

6 M.I.6 submodule ............................................................................................................................. 7 

Bibliography ............................................................................................................................................. 8 

Annex 1 .................................................................................................................................................... 8 

Annex 2 .................................................................................................................................................... 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D4.5.3 – Final building-side energy management software module – interfacing, microgrid level 
 

 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  3 
 

Executive summary 

Integrated energy management of buildings and grids installed with the 3Smart project is on the side 

of buildings divided into three vertical levels – zone level, central HVAC system level and microgrid 

level. In each of these levels the energy management algorithms are classified into three parts – (i) 

prediction and estimation, (ii) model predictive control, and (iii) equipment interfacing -- and the 

algorithms are implemented via a sequence of submodules. 

The submodules are designed, commissioned and tested on different pilot buildings in the Danube 

region. 

Within this deliverable the focus is put on microgrid level interfacing submodules.  

Each submodule is presented via an interfacing table that explains what data are used by the 

submodules as inputs and what are the final output data. The algorithms behind are in more detail 

explained in the annexed document. 
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1 Introduction 

Within the 3Smart project the following interfacing submodules are designed, commissioned and 

tested on the microgrid level: 

M.I.1 – submodule for interfacing commands for energy exchange with the battery system (tested in 

UNIZGFER, HEP, STREM retirement and care centre and EPHZHB pilot buildings within 3Smart);  

M.I.2 -- submodule for interfacing commands for energy exchange with the domestic hot water tank 

(tested in IDRIJA school and sports centre pilot buildings within 3Smart); 

M.I.4 -- submodule for interfacing commands of heating energy to electric room heaters (tested in 

EON pilot building within 3Smart); 

M.I.5 – submodule for interfacing commands for energy injection from the photovoltaic system to 

the building (tested in EON pilot building within 3Smart); 

M.I.6 – submodule for interfacing commands for energy injection from CHP (tested in IDRIJA school 

and sports centre pilot buildings within 3Smart).  

In the following chapters the mentioned submodules are presented with their interface tables 

showing which data they use as inputs and which data they provide as outputs to be at the disposal 

to other submodules or to be used for building actuators in the microgrid. Detailed explanations of 

algorithms behind each of the submodules are provided in the previously delivered 3Smart 

document D4.2.1 (related to interfacing on the microgrid level) -- it is here updated with included 

feedback from operation on different pilots and provided as Annex 1. 

Source and sink for the data used by the submodules is a properly structured 3Smart database. Its 

structure in the part concerned by the microgrid level interfacing submodules is provided in Annex 2. 

2 M.I.1 submodule 

M.I.1 submodule is used for interfacing commands for energy exchange with the battery system. 

Within 3Smart it is tested in UNIZGFER, HEP, STREM retirement and care centre and EPHZHB pilot 

buildings. 

The submodule interface is defined in Table 2.1 and Table 2.2.  

Table 2.1: Inputs of the M.I.1 submodule 

Variable name Variable annotation Variable description 

Current SoC 

 

SoCE 

SoC 

Historical profiles of SoC 

calculated by the battery pack 

controller and M.I.1 module 

Commanded energy exchange 

AC side 

Ebat Energy command from 

M.MPC.1 

Exchanged energy Eex Energy exchange of the last 
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minute 

MPC sampling time TMPC System-wide parameter 

 

Table 2.2: Outputs of the M.I.1 submodule 

Variable name Variable annotation Variable description 

Reference power for power 

converter (AC side) 

Pref Written into the building 

energy management’s 

database 

 

3 M.I.2 submodule 

M.I.2 submodule is used for interfacing commands for energy exchange with the domestic hot water 

tank. Within 3Smart it is tested in IDRIJA school and sports centre pilot buildings. 

The submodule interface is defined in Table 3.1 and Table 3.2. 

Table 3.1: Required inputs for the M.I.2 submodule 

 

Variable name Variable annotation Variable description 

Commanded heat energy 

consumption 
E_cmd_ht 

Energy that should be injected 

to tank in 15min interval. 

Commanded electric energy 

consumption 
E_cmd_el 

Energy that should be injected 

to tank in 15min interval. 

Electric energy meter 

measurements data 
DHW_emeter 

Electric energy consumption 

data 

Heat meter measurements DHW_cal Heat energy consumption data 

Electric heaters technical data φDHW_el 

pilot specific data depending 

on the installation of the 

electric heaters. 

Heat exchanger technical data 

φDHW_ht 

 

pilot specific data depending 

on the installation of the heat 

exchanger. 

 

Table 3.2: Outputs of the M.I.2 submodule 

 

Variable name Variable annotation Variable description 

Switch heater 1 ON DHW_heater_1 Switch ON the heater 

Switch heater 2 ON DHW_ heater_2 

Switch ON the heater 

 

Switch heater 3 ON DHW_ heater_3 

Switch ON the heater 
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Switch pump ON DHW_pump Switch ON the pump 

 

4 M.I.4 submodule 

M.I.4 submodule is used for interfacing commands of heating energy to heat storage systems, like 

boilers or rooms with electric room heaters (tested in EON pilot building within 3Smart). 

The submodule interface is defined in Table 4.1 and Table 4.2. 

Table 4.1: Inputs of the M.I.4 submodule 

Variable name Variable annotation Variable description 

Controllable load energy 

command from the microgrid 

MPC module 

El Energy command from 

M.MPC.1 

Exchanged energy Eex Energy exchange of the last 

minute 

MPC sampling time TMPC System-wide parameter 

 

Table 4.2: Outputs of the M.I.4 submodule 

Variable name Variable annotation Variable description 

Array of ON/OFF signals for 

electric heaters 

ul Written into the building 

energy management’s 

database 

 

5 M.I.5 submodule 

M.I.5 submodule is used for interfacing commands for energy injection from the photovoltaic system 

to the building. Within 3Smart it is tested in EON pilot building. 

The following tables provide the input-output interface of the submodule (Table 5.1 and Table 5.2). 

Table 5.1: Inputs of the M.I.5 submodule 

Variable name Variable annotation Variable description 

Commanded energy exchange EPV Energy command from 

M.MPC.1 

Exchanged energy Eex Energy exchange of the last 

minute 

MPC sampling time TMPC System-wide parameter 
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Table 5.2: Outputs of the M.I.5 submodule 

Variable name Variable annotation Variable description 

Commanded power out for 

solar inverters 

pPV,out Written into the building 

energy management’s 

database 

6 M.I.6 submodule 

M.I.6 is a submodule used for interfacing commands for energy injection from CHP. Within 3Smart it 

is tested in IDRIJA school and sports centre pilot buildings. 

The following tables provide the input-output interface of the submodule (Table 6.1 and Table 6.2). 

Table 6.1: Required inputs for the M.I.6 submodule 

 

Variable name Variable annotation Variable description 

Commanded heat energy 

produced 
Et_CHP 

heat energy to be produced in 

time interval (MPC sampling 

period) 

Heat meter measurements Eexp_CHP 

Heat energy produced - heat 

energy measured on 

calorimeter in time interval 

 

Table 6.2: Outputs of the M.I.6 submodule 

 

Variable name Variable annotation Variable description 

Desired power PE_CHP 
Reference electrical power for 

CHP 

Start CHP signal CHP_StartCmd CHP_StartCmd 
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Annex 1 – Open software module for microgrid level consumption 

management – Interfacing submodules 

Provided in a separate document. 

 

Annex 2 – 3Smart database organization for open software module 

for the microgrid level management – Interfacing submodules 
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Executive summary 

The main objective of the project Smart Building – Smart Grid – Smart City (3Smart) funded 

within the Interreg Danube Transnational Programme is to provide technology and 

legislative setup for cross-spanning energy management of buildings and utility grids, 

foremost electricity distribution grids. 

One of the main pillars in reaching that objective is to derive a modular energy management 

tool for buildings, which can be easily adapted to different configurations of the building and 

adds upon the existing building automation system. This “3Smart” energy management 

concept consists of three modules put in the hierarchical organization: zones comfort 

module, central HVAC module and microgrid energy flows module. Further on, each of the 

modules incorporate three different submodules: prediction and estimation, optimal control 

and interfaces to the equipment. Each of the considered pilot locations has a specific 

configuration where all modules are not necessarily present. High level of flexibility is 

therefore targeted to achieve easy modifications for particular pilots. 

This annex describes the interfacing submodules on the microgrid level. These modules are 

essential for transmitting MPC command towards the building equipment in the field. 
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1 Introduction 

One of the main focuses of 3Smart project is to derive a modular energy management tool 

for buildings that can be easily adapted to different configurations of the building and adds 

upon the existing building automation system. This “3Smart” energy management concept 

consists of three modules put in the hierarchical organization: zones comfort module, 

central HVAC module and microgrid energy flows module, as shown in Fig. 1. Further on, 

each of the modules incorporate three different submodules: prediction and estimation, 

optimal control and interfaces to the equipment (Fig. 2). Each of the considered pilot 

locations has specific configuration where all modules are not necessarily present. High level 

of flexibility is therefore targeted to achieve easy modifications for particular pilots. 

 

Figure 1: Functional diagram of the 3Smart EMS hierarchy on the building side. 
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Figure 2: Modules schematics of the 3Smart EMS concept. 

 

This document contains the descriptions of the following submodules: 

 Submodule for issuing commands towards the storage power converter based on 

the commanded energy exchange signals 

 Submodule for issuing commands towards the heaters in domestic hot water tank 

 Submodule for issuing commands towards the controllable loads based on the 

commanded energy exchange signals 

 Submodule for issuing commands towards the controllable PV inverters based on 

the commanded energy exchange signals 

 Submodule for issuing commands towards the CHP system 
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2 M.I.1 -- Module for issuing commands towards the storage 

power converter based on the commanded energy 

exchange signals 

2.1 Theory 

Tasks of this module 

Based on the energy command from microgrid MPC module the module M.I.1 provides the 

required energy flow from/to batteries. This control is realized via a current reference signal 

(DC side) to the power converter or via the power reference on the AC side of the power 

converter. During this process the module needs to respect the following limitations: 

- state-of-charge of the batteries 

- allowed maximum current for batteries 

- the currently required charging method (CC vs. CV) 

- battery status information (temperature, error signals) 

- longevity of the battery pack 

Challenges of LiFePO4 batteries [1] 

- Long voltage relaxation time to reach its open circuit voltage (OCV) after a current 

pulse 

- Time-, temperature-, and SOC-dependent hysteresis 

- Very flat OCV-SOC curve for most of the SOC range 

Charging of LiFePO4 batteries [2] 

During the conventional lithium ion charging process, a conventional Li-ion Battery 

containing lithium iron phosphate (LiFePO4) needs two steps to be fully charged: 

1. uses constant current (CC) to reach about 60% State of Charge (SOC); 

2. takes place when charge voltage reaches 3.65V per cell, which is the upper limit of 

effective charging voltage. Turning from constant current (CC) to constant voltage 

(CV) means that the charge current is limited by what the battery will accept at that 

voltage, so the charging current tapers down asymptotically. 

To put a clock to the process, step 1 (60% SOC) needs about one hour and the step 2 (40% 

SOC) needs another two hours. 

2.2 Inputs 

 Current SoC 

o [SoCE] = kWh 

o [SoC] = % 

 Commanded energy exchange 
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o [Ebatt] = kWh 

 Battery system energy exchange of the last minute, Eex 

o [Eex] = kWh  

 MPC sampling time 

o [TMPC] = s 

Resolution: 1/min for SoC, 1/TMPC for Ebatt  

2.3 Outputs 

 Reference power for power converter AC side 

 [Pref] = W 

2.4 Frequency of submodule calls: 

1/min 

2.5 Algorithm 

For every 15 min cycle: 

o 𝐸𝑠𝑢𝑚 = 0 

o For every 1 min cycle (i): 

 

 At the end of the 1 min cycle: 𝐸𝑠𝑢𝑚 = 𝐸𝑠𝑢𝑚 + 𝐸𝑒𝑥,𝑖  
 

 

3 M.I.2 -- Module for issuing heating commands towards the 

domestic hot water tank 

The output of the MPC is the energy that the heater and exchanger should consume in the 

time frame. These two parameters are stored as records in database. Each command is one 

record with time when command should be applied. Time granularity is 15 minute interval in 

prediction horizon. In case of a real device, the on-off state could be modulated in order to 

obtain the right amount of energy. 

 

A model for a single element electric water heater is presented. Same alghoritem Power 

step is defined with max power of each heating element of electric heater. 

3.1 Inputs 
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 Energy command from the microgrid MPC module: [EMPC_e] = kWh 

 Energy command from the microgrid MPC module: [EMPC_ex] = kWh 

 Heat energy imported to excager in the last minute: [Eout_ex] = kWh  

 Electric energy consumed on el. heaters in the last minute: [Eout_e] = kWh 

 Power of stage 1: [Pel_1] = kW 

 Power of stage 1+2: [Pel_2] = kW 

 MPC sampling time [TMPC] = min 

 „valid from“ timestamp 

3.2 Outputs 

 ON/OFF signal for every power stage of electric heater: 

o Cmdel_1 

o Cmdel_2 

o Cmdel_3 

 ON/OFF signal for circulation pump for heat exchanger Cmdex 

3.3 Internal parameters 

 Controllable load heat energy exchange of the interval: [Esum_ex] = kWh  

 Controllable load electric energy exchange of the last interval: [Esum_el] = kWh 

 Max Energy produced on heater stages in one MPC interval: [Eel_1], [Eel_2] = kWh 

 Energy to produce till the end of current MPC interval: [Eremain_el] = kWh 

 Energy to produce till the end of current MPC interval: [Eremain_ex] = kWh 

 Current time 

 

3.4 Frequency of submodule calls: 

1/min 

3.5 Algorithm 

Eel_1 = Pel_1 / 60 * TMPC  

Eel_2 = Pel_2 / 60 * TMPC 

Eex = Pex / 60 * TMPC 

For every 1 minute cycle: 

Esum_el = Eout_e + Esum_el 

Eremain_el = EMPC_el - Esum_el 

 

Cmdel_1, Cmdel_2, Cmdel_3 = OFF 
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IF (Eremain_el > 0): 

IF (Eremain_el < E_el_1): Cmdel_1 = ON 

ELSE IF (Eremain_el < E_el_2): Cmdel_1, Cmdel_2 = ON 

ELSE: Cmdel_1, Cmdel_2, Cmdel_3 = ON 

 

Esum_ex = Eout_ex + Esum_ex 

Eremain_ex = EMPC_ex - Esum_ex 

Cmdel_3 = OFF 

IF (Eremain_ex > 0): Cmdex = ON 

 

For every 15 min cycle: 

Esum_el = 0 

Esum_ex = 0 

 

4 M.I.4 -- Module for issuing commands towards the 

controllable loads based on the commanded energy 

exchange signals 

4.1 Inputs 

 Controllable load energy command from the microgrid MPC module, El 

 [El] = kWh 

 Controllable load energy exchange of the last minute, Eex 

 [Eex] = kWh  

 MPC sampling time 

o [TMPC] = min 

The temperature of the heat buffer is: 

 the room temperature in case of room heating, 

 buffer tank temperature measured at middle height of the tank in case of a water 

chiller 
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 equivalent temperature calculated based on three measurement (top, middle, 

bottom) in case of a water boiler. 

Resolution: 1/min, El is changed with sampling frequency of the microgrid-level MPC module  

Theatstorage should be the current value at the time stamp  

4.2 Outputs 

 For hot water boilers, water chillers and room heaters, ul 

 Array of ON/OFF signals  

4.3 Internal parameters 

 Simplified model of the controllable load, θI 

 Nstepping  - dimensionless 

 [Pin,min] = kW 

 [Pin,max] = kW 

4.4 Frequency of submodule calls: 

1/min 

4.5 Algorithm 𝐸𝑠𝑡𝑒𝑝𝑝𝑖𝑛𝑔 = 𝑃𝑖𝑛,𝑚𝑎𝑥𝑁𝑠𝑡𝑒𝑝𝑝𝑖𝑛𝑔 ∙ 60𝑠 

For every 15 min cycle: 

o 𝐸𝑠𝑢𝑚 = 0 

o For every 1 min cycle (i): 

 Nstepping = 1) { 

  If ( Esum < El ) 

   then the unit ON 

   else the unit is OFF 

 } Else { 

  𝑟𝑒𝑚𝑎𝑛𝑖𝑛𝑔_𝑠𝑡𝑒𝑝𝑠 = 𝐸𝑙−𝐸𝑠𝑢𝑚𝐸𝑠𝑡𝑒𝑝𝑝𝑖𝑛𝑔 

   𝑜𝑝_𝑙𝑒𝑣𝑒𝑙 = 𝑟𝑜𝑢𝑛𝑑_𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (𝑟𝑒𝑚𝑎𝑛𝑖𝑛𝑔𝑠𝑡𝑒𝑝𝑠𝑇𝑀𝑃𝐶−𝑖∙1𝑚𝑖𝑛 ) 

  Operate at op_level  for 1 minute. 
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 } 

 At the end of the 1 min cycle: 𝐸𝑠𝑢𝑚 = 𝐸𝑠𝑢𝑚 + 𝐸𝑒𝑥,𝑖  
 

 

5 M.I.5 -- Module for issuing commands towards the 

controllable PV inverters based on the commanded energy 

exchange signals 

5.1 Inputs 

 Commanded energy exchange, EPV 

 [EPV] = kWh 

PV system energy exchange of the last minute, Eex 

 [Eex] = kWh 

 MPC sampling time 

o [TMPC] = s 

Resolution: 1 / 15 min 

5.2 Outputs 

 Commanded power output for solar inverters, pPV,out 

 [pPV,out] = % (of the nominal power of the inverter) 

5.3 Frequency of submodule calls: 

1/min 

5.4 Algorithm 

For every 15 min cycle: 

o Esum=0 

o For every 1 min cycle (i): 

o Esum=Esum+Eex,i 

o If Esum< EPV,ex then inverter to maximum output 

 else inverter output to zero 
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This algorithm gives the safest approach to energy commands. It gives the highest possibility 

to fulfilling the energy commands. Also it is not very grid-friendly.  

 

 

6 M.I.6 -- Module for CHP plant interfacing 

The output of the MPC is the heat energy that the CHP should produce in the time frame. 

These values are stored as records in database. Each command is one record with time when 

command should be applied. Time granularity is 15 minute interval in prediction horizon. 

Output of the module is a power demand value, sent to CHP controller, in order to obtain 

the right amount of energy. In real life, CHP unit cannot follow desired power setpoint 

changes very fast. To manage this issue, desired power is recalculated every minute, based 

on energy remaining to be produced in time interval. 

 

6.1 Inputs 

 Energy command from the microgrid MPC module: [EMPC_el] = kWh 

 Electric energy produced in the last minute: [Eout_E] = kWh 

 CHP max power: Pel_max = kW 

 MPC sampling time [TMPC] = min 

 Power gain factor: k 

 „valid from“ timestamp 

6.2 Outputs 

 Power command: [Pel] = kW 

6.3 Internal parameters 

 Controllable load electric energy exchange of the last interval: [Esum_el] = kWh 

 Energy to produce till the end of current MPC interval: [Eremain_el] = kWh 

 The current minute count in current MPC interval: [T] 

 Current time 

 

6.4 Frequency of submodule calls: 

1/min 

6.5 Algorithm 
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For every 1 minute cycle: 

Esum_el = Eout_e + Esum_el 

Eremain_el = EMPC_el - Esum_el 

Pel = 0 

 

IF (Eremain_el > 0): 

 Pel = Eremain_el / (TMPC - T) * k 

 

T = T + 1 

 

For every 15 min cycle: 

Esum_el = 0 

T = 0 
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Executive summary 

One of the objectives of the project Smart Building – Smart Grid – Smart City (3Smart), is 

creation of an integrated and modular energy management tool for the DSO to use buildings as their 

assets and to utilize their flexibility in order to more efficiently plan investment into the distribution 

grid. The tool is organized in two main submodules, Long-term and Short-term module. The Long-

term module is used by DSO for offline planning and it allows DSO to plan their investments based on 

reserving buildings flexibility services and substituting CAPEX with higher OPEX paid to the building 

for providing services. Long-term Annual module calculates the DSO needed flexibility and Multi-

Annual module calculates the flexibility service fee (activation, reservation and penalty prices). On 

the other hand, the short-term module is used by the DSO to optimize usage of flexibility services 

and schedule. Day-ahead module is used for determining time windows for utilizing daily flexibility 

coming from reservation windows in the long-term contract and the intra-day module is used for 

improving daily schedule.  

The focus of deliverable 5.4.3 is on energy management tools interfaces. Deliverable 5.4.3. has 4 

outputs, one for each submodule. The deliverable explains every variable that is used as submodule 

inputs and describes the final output of the modules. Database outlook is described in Annex 1 while 

submodules algorithms and logic are provided in Annex 2. This document presents Short-term Day-

ahead module interface tables. 
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1 Introduction 

Short-term day-ahead module is constructed to utilize the contracted flexibility reserve in the long-

term module. The module is used for day-to-day operations for optimizing the usage of building 

flexibility potential as the distribution network/system operator asset. It is cast as AC OPF algorithm 

to define how much of maximal reserved capacity from the long-term contract will be activated in 

the next day (and for how long). Day-ahead flexibility is based on load predictions, up to 36 hours 

before realization of utilization. Database scheme is provided in Annex I, and detailed logic and 

algorithms are described in Annex II. 

1.1. Day-ahead module interface tables 

Day-ahead interface tables are described in Table 1 and Table 2. Interface tables are compatible with 

DSO database tables “info_grid”, “ac_opf_module_load_input”, “building_flexibility_table” 

,“ac_opf_module_results” and “dso_to_building_da_flexibility_activation_profiles”. 

Table 1: Day-ahead input interface table 

Variable name Variable annotation Variable description Source 

Active power 

matrix  

 

p_mat 

Active power matrix contains 

calculated daily active power 

profiles for all nodes in the 

the grid. Matrix dimensions 

are number of rows x 

number of time intervals (96) 

Neplan, 

SCADA, DSO 

replacement 

curves or 

PowerFactory 

(actual 

measurements 

from AMR) 

Reactive power 

matrix 
q_mat 

Reactive power matrix 

contains calculated   daily 

reactive power profiles for all 

nodes in the the grid. Matrix 

dimensions are number of 

rows x number of time 

intervals (96) 

Neplan, 

SCADA, DSO 

replacement 

curves or 

PowerFactory 

(actual 

measurements 

from AMR) 

Grid description 

table 
grid_description_table 

Grid description table 

contains infromations where 

every row describes one lines 

with Line Name, Node From, 

Node To, Lenght, Resistance 

in Ohm/km, Reactance in 

Ohm/km, Maximum Rated 

Current in Ampers 

DSO data, 

simulation 

tools such as 

Neplan, 

PowerFactory 

or GREDOS (in 

case excel 

tables with 

data) 

Building flexibility 

table 
Building_flexibility_table 

Building_flexibility_table 

defines flexibility reservation 

(minimum and maximum 

reserved capacity, when and 

how long)  

Long-term 

Contract 

Building predicted Building_predicted_da_profile Building predicted profile Building MPC 
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profile based on 

Day Ahead market 

prices 

based on Day Ahead market 

prices is proved by building 

and it presents building load 

prediction for next day, 

calculatd base on day-ahead 

market price 

 

Table 2: Day Ahead output interface table 

Variable name Variable annotation Variable description 

Voltage matrix u_mat 

Voltage matrix contains 

calculated daily voltage profiles 

for all nodes in the grid. Matrix 

dimensions are number of rows 

times number of time intervals 

(96) 

Current matrix i_mat 

Current matrix contains 

calculated daily voltage profiles 

for all nodes in the the grid. 

Matrix dimensions are number 

of rows times number of time 

intervals (96) 

DA flexibility activation profile da_flexibilty_activation_profile 
DA flexibility activation profile 

calculated by AC OPF.  

 

 

 

 

  



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D5.4.3 – Final grid-side energy management software module – short-term day-ahead 
 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  

Conclusion 

Short-term Day-ahead module input interface includes grid topology, load profiles predictions from 

distribution management tool (or it can be created from replacement curves), flexibility reservations 

from the Long-term contract and the predicted building behaviour based on day-ahead market 

prices. The outputs are AC OPF results for voltage and current network behaviour and DA requested 

flexibility. Figure 1. depicts energy management submodules interconnection. Each module is 

described with table, the left column contains input data and the right column contains output data. 

 

Figure 1. Energy managent submodules inteconnection 
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Annex I: Database outlook 

DA module database structure and its relations are describe with Figure II.  

 

Figure I. Day-Ahead module database tables and relations  
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Database communication model is depicted with Figure III. The database communicates with other 

databases via TCP/IP protocol. The general idea of communication protocol is allowing entity (DSO, 

buildings and retailer) approach to database tables of other entities with python scripts, which 

presents one of the layers of regular programs (such as mpc, ac opf, day ahead module, intraday 

module). Entity can directly connect to other databases.  Data privacy is guaranteed with entities 

access level to database. Every entity will have new account with read-only access to database. 

building will have read only access to the DSO and Retailer databases and vice-versa. For example, if 

the building has to deliver passive profiles to the DSO, the building just has to put the profiles into a 

certain table available to the DSO. The DSO will read this table at a certain time of day. After data is 

read, data timestamp will be checked to determine if the data is fresh. Even higher level of privacy 

can be guaranteed if the access is provided only for tables with needed data for specific entity.  

The Python layer will connect to the database, read the data and write it to its own tables. The data 

structure of exchanged data will be formatted as JSON object. JSON data format is plain text which is 

easily readable by built-in Python JSON parsing libraries and easily convertible to other data types. 

Here is an example of a structure consisting of a 2x2 matrix A, 2x1 vector b and a description string:  

Model = '{"A": [[0.027734449084562574, 0.2975643267384046], [0.6371333688566387, 

0.38837159365408835]], "b": [[0.3884257461956241], [0.6990043851887695]], "description": "state space 

model matrices"}' 

Data will be stored on principles of dictionary (key:value), and items are separated by “,”.  

JSON data structure will be stored in database as varchar(2000) data type. 

 

Figure II Communication model between building and DSO, and communication model between building and retailer. 

Entities will have read-only access to other database output tables. Python program will automatically connect and read 

data and write to its own database 

 

Table I describes all communication events (DBD stands for day before delivery). Communication will 

be implemented with python scripts running on entity server defined with column ”Reads data” in 

table Scripts will read entity data from entities described in table’s column “Puts data at disposal” at 

a certain time described with column “Time”. General data exchange structure contains objects: the 
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first is json object with 15 min resolution energy profiles and time when first time horizon occurs, 

and second object is timestamp when data was created. In case there are no fresh data in the table, 

scripts will repeat the check 10 minutes later. Table II contains json definitions and data examples for 

non-scalar data.  Measurement units may be changed if necessary. 

Table I Chronological communication events for DA module with detailed exchange structure  

Time 

(UTC) 
Data exchange 

D.5.2.1 

Nomenclature 
Reads data 

 Puts data 

at disposal 

DBD, 

10:00 

Informative DA profiles (json), 

profile created at (timestamp) 

Informative DA 

schedule of the 

building 

Retailer Building 

DBD, 

13:15 

DA prices (json), 

Profile created at (timestamp) 
DA prices Building Retailer 

DBD, 

14:00 

Declared DA profile (json),  

profile created at (timestamp) 

DA schedule of 

the building 
Retailer Building 

DBD, 

14:00 

Declared DA profile (json),  

profile created at (timestamp) 

DA schedule of 

the building 
DSO(DA) Building 

DBD, 

14:15 

DA flexibility activation profile (json),  

profile created at (timestamp) 

DA flexibility 

profile by the 

DSO 

Building DS0(DA) 

 

Table II Json definitions for dat exchanged in DA module 

Communication 

event ID 
JSON DATA 

General definition 
{“profile name”: [vector – float – 96 values], “Measuring unit”: “mu”, 

“Valid from”:“(timestamp yyyy-mm-dd hh:mm:ss)”} 

1 

{"Informative_DA_profile":  [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-

4.75474499685196,-7.05352031484420,-

5.04552454338058,1.98883041147715,15.5199743752825,30.2243591989718,4

2.3750160963821,48.6996128188282,44.0724614014147,33.4154602577768,19

.8069030463219,6.79379492247743,0.346017609948462,-2.30051566857788,-

2.10296945666405,-0.70158591015846,-1.68728914210829,-

3.48502195975458,-5.93454746246068,-8.55606118169379,-

9.97439866415701, -10.9480980304388,-11.5617755279102,-

11.9988086060426,-12.5542121763336,-13.3104639796222,-

14.3500838192498,-15.6410980791624,-17.3420595721479,-

18.6963549900087,-19.2700190856583,-18.7612213674154,-

16.5841650293630,-13.7369740391108,-10.8515696391588,-

8.53751494017917,-7.82298188488800,-7.89979480781464,-

8.35233441647422,-8.69405392448411,-7.96185434358636,-

6.81912958501434,-5.52032972642133,-4.37530285097900,-

4.09029359681548,-4.08694862794924,-4.14444794247938,-

4.02488936856972,-3.20115730971145,-2.17170873726020,-

1.15928853152464,-0.396016163235099,-0.323319434636732,-

0.573300018627128,-0.967378458249253,-1.29913927110666,-
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1.18648307394541,-0.864926954692977,-

0.427156949382357,0,0.167044947284598,0.196985558515131,0.12207565771

2569,0,-0.0384652719847160,-0.0485771390292825,-

0.0316919637025193,0,0.00672663117077245,0.00880493437779292,0.005923

19087065342,0,0,0,0], "Measuring_unit": "kW", "Valid_from": "2018-09-

17 2:00:00"} 

2 

{"DA_prices": [0.05207, 0.05207, 0.05207, 0.05207, 0.05203, 0.05203, 

0.05203, 0.05203, 0.05001, 0.05001, 0.05001, 0.05001, 0.05201, 

0.05201, 0.05201, 0.05201, 0.05201, 0.05201, 0.05201, 0.05201, 

0.05202, 0.05202, 0.05202, 0.05202, 0.07604, 0.07604, 0.07604, 

0.07604, 0.07892, 0.07892, 0.07892, 0.07892, 0.07891, 0.07891, 

0.07891, 0.07891, 0.07646, 0.07646, 0.07646, 0.07646, 0.07842, 

0.07842, 0.07842, 0.07842, 0.07897, 0.07897, 0.07897, 0.07897, 

0.07791, 0.07791, 0.07791, 0.07791, 0.0774, 0.0774, 0.0774, 0.0774, 

0.07849, 0.07849, 0.07849, 0.07849, 0.08001, 0.08001, 0.08001, 

0.08001, 0.0801, 0.0801, 0.0801, 0.0801, 0.09, 0.09, 0.09, 0.09, 0.08915, 

0.08915, 0.08915, 0.08915, 0.09572, 0.09572, 0.09572, 0.09572, 

0.08786, 0.08786, 0.08786, 0.08786, 0.07715, 0.07715, 0.07715, 

0.07715, 0.07499, 0.07499, 0.07499, 0.07499, 0.04648, 0.04648, 

0.04648, 0.04648], "Measuring_unit": "EUR/kWh", "Valid_from": "2018-

10-22 22:00:00"} 

4, 5 

{"Declared_DA_profile": [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-

4.40881457120924,-6.55389304153656,-

4.71567490719656,1.80858823194224,14.2292798223350,28.0499605547677,3

9.9898919078737,47.0781254403744,44.9627637978742,37.1946817818429,26

.0879184797042,14.5324136930805,7.16204232894512,2.80565510662295,1.3

4244968217499,1.93025454387579,2.59541455847064,3.23638385255257,3.16

861489241684,2.01281679068190,-0.504769000907987,-3.67899371588490,-

6.86867892635720,-9.44771190741795,-10.2758631035784,-

10.3660853060221,-10.2345200069028,-10.4410650451395,-

12.1245077838722,-14.3034068037717,-16.5210240279394,-

18.2619054356731,-18.5806791482442,-18.0898428911675,-

17.0505569358873,-15.8125466825114,-15.0399250698480,-

14.4384015745078,-13.9447774650335,-13.4279366704656,-

12.5725771324292,-11.5245083989525,-10.2992369435445,-

8.94509047241126,-7.61639367907759,-6.25332636192884,-

4.89183184662384,-3.58120121353285,-2.29945807622209,-

1.25126521897513,-0.538192266877596,-0.216249124347829,-

0.387578120586701,-0.799564497800280,-1.27212876817409,-

1.62955619555073,-1.61616034188853,-1.37332137608418,-

0.977899964219016,-0.540682239998261,-0.260419166637827,-

0.081519377896404,0,0,0,0,0,0,0,0,0,0,0,0,0], "Measuring_unit": " kW", 

"Valid_from": "2018-10-22 22:00:00"} 
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6 

{"DA_flexibility_activation_profile": 

[0,0.606574912975372,1.02600697833224,0.901944678545856,0,-

2.27583404120944,-4.78750458145718,-6.86169525355939,-

7.89602137707201,-6.88349111270873,-4.82005198123357,-

2.30099744070119,0,0.963681997196315,1.12643135531563,0.6924897481065

69,0,-0.246250131913775,-0.311559428811153,-

0.203594181209020,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0392156399009166,0.05

82947845934666,0.0445349730406702,0,-0.221776913727023,-

0.339384397697267,-

0.268242412118061,0,0.754335110221086,1.22703148009311,1.049747187681

53,0,-2.51646497247400,-5.26534283912386,-7.50956736614412,-

8.60120481504233,-7.41812971373539,-5.12880048916783,-

2.41089986671777,0,0.790747739909002,0.805732681406043,0.393906517906

737,0,0.591157743760178,1.46158826336528,2.35136785391709,2.953206429

19753,2.61767974068478,1.85926744565602,0,0,-0.360428592314349,-

0.421298798687064,-

0.258999447772524,0,0.0921004944173757,0.116526952537633,0.0761466587

007446,0,-0.0185005333725646,-0.0247864383567575,-

0.0171095030911426,0,0.0181509673970601,0.0277763588380361,0.02195385

98271621,0,-0.0617373186504593,-0.100424376983395,-

0.0859148351311970,0,0.240854438581268,0.482810606928905,0.6542404483

57125,0.703951486877629,0.409762564606634,0.117735784028214,-

0.04139617671033],"Measuring_unit": " kW", "Valid_from": "2018-10-22 

22:00:00"} 
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Annex II: Day-ahead module logic and algorithm 

The first step in utilizing the needed flexibility is through day-ahead load forecast, which must be 

specific to grid zones specified by the EMS. The load forecast is used to determine the need for 

demand response services together with the estimated period of service. The grid side EMS module 

will compare the predicted load, which is based on predefined data (namely the load profiles from 

the customers, network parameters either automated from NEPLAN of inputted and .csv parameters, 

etc.), against the network limits set in a predefined table of the respective grid scenario. The 

outcome is an estimated flexibility need for the next day. In general, the sequence of events defining 

the need for next day flexibility for the DSO, utilized from the flexibility provider (in this case the 

building), is defined as follows (and presented in Figure III.): 

- Passive profiles (or those not coming from optimization based on DA market prices) are 

used by the retailer to bid in the power exchange and by the DSO to plan the next day 

operation. This is shown in Figure III. By arrows “Informative DA schedule of the building” 

going from the building to both the retailer and the grid side EMS. In the project we do not 

focus on the retailer side of market bidding on a DA ahead market. For the DSO (grid-side 

EMS) this aspect is covered by historical recorded consumption data of the building. 

Additionally, the building can send assumed profiles which are not based on optimization 

driven by historical DA market prices. 

- The retailer sends the DA price profile to the flexible user – the building. 

- The building computes its optimal schedule based on the prices from the day-ahead 

market, its current conditions and predictions as well as the long-term contract for 

flexibility provision. In Figure III. these two steps are presented with the arrows of DA prices 

being provided to the building by the retailer (or an aggregator). The project does not focus 

on how these prices are defined by the retailer, however it assumes they reflect the DA 

prices on the power exchange. 

This schedule/profile will, at least at the beginning when the DSO does not have sufficient 

information to forecast behaviour of flexible buildings, be different than that predicted by 

the DSO who considers buildings to be passive consumers (note: the DSO does not know or 

has information on how the EMS of the building works nor how it will schedule its 

consumption based on market prices. In case the DSO has adequate tools and enough 

historical data on building flexible scheduling it can adjust its forecasting tool). 

- The building communicates the DA price driven optimal schedule to the DSO (grid side 

EMS). This information is a valuable source of information for the DA grid side EMS module 

in defining needed flexibility for the next day. In Figure III. This is referred to as “DA schedule 

with flexibility”. Unlike the Informative DA schedule profile, which is based on historical data 

and not on knowledge of buildings capability to flexibly schedule its actuators based on DA 

prices, this is the profile that defines electricity exchange between the building and power 

system (distribution network).  

- The same DA schedule is also sent to the retailer to assist him plan its market position 

(arrow indicating “DA schedule of the building) such as procurement of balancing energy etc 

(again presented by arrows on the retailer side). Potentially, the need for self-balancing of 

the retailer/aggregator portfolio could again be procured from the building (flexibility 

provider). This aspect is not currently in the focus of the 3Smart project, however in Figure 
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III. it is shown as arrows “Request for flexibility” and “Flexibility availability with prices” in 

grey colour. 

- DSO runs the AC Optimal Power Flow calculation (AC OPF) based on the latest data from 

the network users (this is DSO grid-side EMS tool). In addition to the information received 

from the network users (such as flexible buildings) and own field operators (such as 

scheduled maintenance or network upgrades/reconnections) the grid-side EMS relies on the 

flexibility contracts from the long-term module which constrain both the time windows and 

the power which the grid side EMS can demand from the flexibility provider.  

- Calculated flexibility needs are communicated with the building. The calculated profile 

determines set points for the building to provide DSO flexibility based on long-term contract 

defined values (in terms of time windows and power). At this point the operational points for 

the next day of the building are defined based on knowledge and information available at 

that point (day before the delivery). These needs are defined as 15-minutes time steps of 

energy exchange profile (meaning the DSO activates long term contracts as time windows for 

providing the flexibility and power for each time step). This is shown in Figure III. with the 

arrow “DA flexibility profile by the DSO”. The prices for the building to provide the service 

are defined in the long-term contract.  

- Modified DA schedule with DSO flexibility needs are sent to the retailer. This is done in 

order to provide the information to the retailer in order to be able to assign 

deviations/imbalances from those defined at the closure of the DA in power exchange. In 

Figure III. Arrow “DA profile with DSO flex.req.” presents this aspect. Information about 

requested/procured flexibilities and deviations from the DA market schedule should also be 

sent to the Transmission System Operator.  
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DSO Retailer Grid Side EMS Building (BEMS)

Day-ahead operation

Sent DA pricesDA prices

Balance energy
Retailer has the opportunity to 

get flexibility for balancing
Request for flexibility

DA AC power flow

Grid Side EMS calculates the 

needed flexibility for DSO

Flexibility availability with prices

DA profle with DSO flex.req.

Informative DA schedule of the building

Informative DA schedule of the buildingBidding in DA market

DA schedule of the building

DA schedule of the building

DA flexibility profile by the DSO

Energy exchange profile information

Price profile informationn

 

Figure III: Day-ahead operation diagram
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Annex II: AC Optimal Power Flow 

To model any power systems network, one must understand physical properties and mathematical 

representations of network elements. When analysing load flows (magnitude and direction of power 

flowing through the network) key elements that need to be modelled are power lines (both cables 

and overhead lines) and transformers. Most common way of representing line elements is a PI 

scheme, presented in Figure IV: 

 

Figure IV PI section of line 

Apparent power 𝑆𝑚𝑛  is a complex variable expressed with real part (active power 𝑃𝑚𝑛 ) and 

imaginary part (reactive power 𝑄𝑚𝑛) where j satisfies 𝑗2  =  −1. Voltages 𝑈𝑚∠𝜃𝑚 and 𝑈𝑛∠𝜃𝑛 are 

presented as complex variables with amplitudes  𝑈𝑚, 𝑈𝑛  and phasors 𝜃𝑚, 𝜃𝑛. The polar form of 

voltage at busbar 𝑚  is 𝑈𝑚𝑐𝑜𝑠𝜃𝑚 + 𝑗𝑈𝑚𝑠𝑖𝑛𝜃𝑚 .  If voltage (or any other variable/constant) is 

expressed just as 𝑼𝒎, it represents a complex variable with neglected phasor due to the simplicity. 𝒁𝒎𝒏 is a complex constant representing impedance of the line between busbar 𝑚 and 𝑛, composed 

of real part resistance 𝑟𝑚𝑛, and  reactance 𝑥𝑚𝑛 as an imaginary part. Admittance is express with (1): 

𝒀𝒎𝒏 = 1𝒁𝒎𝒏 = 1𝑟𝑚𝑛 + 𝑗𝑥𝑚𝑛 = 𝑟𝑚𝑛 − 𝑗𝑥𝑚𝑛𝑟𝑚𝑛2 + 𝑥𝑚𝑛2 = 𝑔𝑚𝑛 − 𝑗𝑏𝑚𝑛 #(1)  

Real part of admittance is a conductance 𝑔𝑚𝑛 : 𝑔𝑚𝑛 = 𝑟𝑚𝑛𝑟𝑚𝑛2 + 𝑥𝑚𝑛2  #(2)  

while imaginary part is a susceptance 𝑏𝑚𝑛 (3): 𝑏𝑚𝑛 = 𝑥𝑚𝑛𝑟𝑚𝑛2 + 𝑥𝑚𝑛2 #(3)  

𝑦𝑝 is a shunt admittance of the line. 

Current 𝐼𝑚𝑛 is defined as (4):   𝑰𝒎𝒏 = (𝑼𝒎 − 𝑼𝒏) ∙ 𝒀𝒎𝒏#(4)  
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Apparent power 𝑆𝑚𝑛 is equel to (5), where * marks complex conjugated variable (or a number): 𝑺𝒎𝒏 = 𝑼𝒎 ∙ 𝑰𝒎𝒏∗ = 𝑼𝒎 ∙ (𝑼𝒎 − 𝑼𝒏)∗ ∙ 𝒀𝒎𝒏∗#(5)  

Incorporating expresions (1-4) in (5), apparent power is presented with (6): 𝑺𝒎𝒏 = (𝑔𝑚𝑛 + 𝑗𝑏𝑚𝑛) ∙ (𝑈𝑚2 − 𝑈𝑚𝑈𝑛 cos(𝜃𝑚 − 𝜃𝑛) − 𝑗𝑈𝑚𝑈𝑛 sin(𝜃𝑚 − 𝜃𝑛))#(6)  

AC power flow relaxation in distribution networks 

Methods used for converting non-convex AC power flow model to convex relaxations are: 

 Ben-Tal, Network and Copper plate which are linear relaxation methods that significantly 

extend the scope of the solution and do not guarantee global optimal solution; 

 Second Order Cone Programming relaxation (SOCP) first time presented in [6]; 

 Semidefinite Programming (SDP) relaxation explained in [7-8]. 

[9-11] show the relaxation accuracy of the relaxations for radial network. 

DistFlow model is used for Alternating Current Optimal Power Flow (AC OPF) calculations in this 

Deliverable. Grid model is presented in Figure 4.3: 

 

Figure III Grid model 

The model is based on the quadratic Kirchhoff Voltage Law (10-11) and the current on the line 𝑚𝑛 is 

calculated as (12): 𝑼𝒏,𝒕𝟐 = |𝑼𝒏,𝒕|2 = |𝑼𝒎,𝒕 − 𝑰𝒎𝒏,𝒕𝒁𝒎𝒏|2#(10)  |𝑼𝒏,𝒕|2 = |𝑼𝒎,𝒕|2 − 2(𝑟𝑚𝑛𝑃𝑚𝑛,𝑡 + 𝑥𝑚𝑛𝑄𝑚𝑛,𝑡) ++|𝑰𝒎𝒏,𝒕|2(𝑟𝑚𝑛2 + 𝑥𝑚𝑛2)#(11)  

|𝑰𝒎𝒏,𝒕|2 = |𝑺𝒎𝒏,𝒕|2|𝑼𝒎,𝒕 |2  #(12)
Where  𝑼𝒎,𝒕 and 𝑼𝒏,𝒕present voltage of the bus 𝑚 and 𝑛, , 𝑰𝒎𝒏,𝒕  current on the line 𝑚𝑛 flowing from 

bus 𝑚 to 𝑛, 𝒁𝒎𝒏 impedance of the line 𝑚𝑛, 𝑟𝑚𝑛 resistance, 𝑥𝑚𝑛 reactance, 𝑃𝑚𝑛,𝑡 active power and 𝑄𝑚𝑛,𝑡  reactive power flowing from bus 𝑚 to 𝑛. 

Equations listed above are non-linear and non-convex and thus cannot be solved using commercial 

solvers. Second Order Cone Programming (SOCP) relaxation is a convex relaxation of DistFlow model 
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and can be solved with commercial solvers.  SOCP relaxations of the above problem are presented 

with (13-14): 𝑢𝑛,𝑡 = 𝑢𝑚,𝑡 − 2(𝑟𝑚𝑛𝑃𝑚𝑛,𝑡 + 𝑥𝑚𝑛𝑄𝑚𝑛,𝑡) ++𝑖𝑚𝑛,𝑡(𝑟𝑚𝑛2 + 𝑥𝑚𝑛2)#(13)  

𝑃𝑚𝑛,𝑡2 + 𝑄𝑚𝑛,𝑡2 = 𝑖𝑚𝑛,𝑡𝑢𝑚,𝑡##(14)  

Where absolute value of quadratic variables of voltage |𝑼𝒎,𝒕|2
 and |𝑼𝒏,𝒕|2

, as well as current |𝑰𝒎𝒏,𝒕|2
 

are replaced with linear variables (15-17): |𝑼𝒎,𝒕|2 = 𝑢𝑚,𝑡#(15)  

|𝑼𝒏,𝒕|2 = 𝑢𝑛,𝑡#(16)  

|𝑰𝒎𝒏,𝒕|2 = 𝑖𝑚𝑛,𝑡#(17)  

Because of non-convexity, (14) is relaxed as (19): 𝑃𝑚𝑛,𝑡2 + 𝑄𝑚𝑛,𝑡2 ≤  𝑖𝑚𝑛,𝑡𝑢𝑚,𝑡##(19)  

The voltage at each node 𝑛 and current on the line 𝑚𝑛 are limited with (20-21): 0.81𝑢𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ≤ 𝑢𝑛,𝑡 ≤ 1.21𝑢𝑛𝑜𝑚𝑖𝑛𝑎𝑙#(20)  𝑖𝑚𝑛,𝑡 ≤ 𝐼𝑀𝐴𝑋2 #(21)  

Upper and lower voltage bounds are determined in grid codes and may differ among the countries 

(here ±10% of nominal value is used).  

The active and reactive power balance of load buses are shown in (22) and (23). 𝑙𝑜𝑎𝑑𝑚,𝑡𝑎𝑐𝑡𝑖𝑣𝑒 + 𝑃𝑓𝑙𝑒𝑥 = ∑(𝑃𝑘𝑚,𝑡 − 𝑖𝑘𝑚,𝑡 ∙ 𝑟𝑘𝑚) − ∑(𝑃𝑚𝑛,𝑡)𝑛∈𝑁𝑘∈𝐾  #(22)  

𝑙𝑜𝑎𝑑𝑚,𝑡𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = ∑(𝑄𝑘𝑚,𝑡 − 𝑖𝑘𝑚,𝑡 ∙ 𝑥𝑘𝑚) − ∑(𝑄𝑚𝑛,𝑡)𝑛∈𝑁𝑘∈𝐾  #(23)  

Where 𝑙𝑜𝑎𝑑𝑚,𝑡𝑎𝑐𝑡𝑖𝑣𝑒 and 𝑙𝑜𝑎𝑑𝑚,𝑡𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 present inflexible or must-served load of the consumer. 𝑃𝑓𝑙𝑒𝑥 is 

required flexibility from the DSO. 
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Executive summary 

One of the objectives of the project Smart Building – Smart Grid – Smart City (3Smart), is 

creation of an integrated and modular energy management tool for the DSO to use buildings as their 

assets and to utilize their flexibility in order to more efficiently plan investment into the distribution 

grid. The tool is organized in two main submodules, Long-term and Short-term module. The Long-

term module is used by DSO for offline planning and it allows DSO to plan their investments based on 

reserving buildings flexibility services and substituting CAPEX with higher OPEX paid to the building 

for providing services. Long-term Annual module calculates the DSO needed flexibility and Multi-

Annual module calculates the flexibility service fee (activation, reservation and penalty prices). On 

the other hand, the short-term module is used by the DSO to optimize usage of flexibility services 

and schedule. Day-ahead module is used for determining time windows for utilizing daily flexibility 

coming from reservation windows in the long-term contract and the intra-day module is used for 

improving daily schedule.  

The focus of deliverable 5.4.3 is on energy management tools interfaces. Deliverable 5.4.3. has 4 

outputs, one for each submodule. The deliverable explains every variable that is used as submodule 

inputs and describes the final output of the modules. Database outlook is described in Annex 1 while 

submodules algorithms and logic are provided in Annex 2. This document presents Short-term Day-

ahead module interface tables. 
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1 Introduction 

Short-term AC OPF module calculation to determining building flexibility profile for next day is 

based on predicted load profiles and building profile based on forecast. Since this advanced decision 

can deviate from actual events, the actual need for flexibility can be compensate (more precisely 

estimated and activated) with Short-term Intra-day module. ST ID Module presents intra-day 

operations that allow DSO to improve day-ahead schedule with real time measurements and prices.  

 

Database scheme is provided in Annex I, and detailed logic and algorithms are described in Annex II.  

1.1. Intra-Day module interface tables 

Intra-day interface tables are described in Table 1 and Table 2. Interface tables are compatible with 

DSO database table “id_triggering_module”.  

Table 1: Intra-day input interface table 

Variable name Variable annotation Variable description 

Day-ahead flexibility profile 

activation 
Da_flexibility_activation_profile 

Building flexibility activation 

profile calculated in day-ahead 

module. 

Predicted feeder consumption 

profiles 
Predicted_feeder_consumtion 

Substation power consumption 

profile based on power profiles 

that are used as input for AC OPF 

calculation 

SCADA measured feeder 

consumption 
Scada_measured_consumtion 

SCADA measured feeder 

consumption is an average 

power measured on feeder for 

time interval of 15 minutes 

Timestamp of SCADA 

measurements 
End_of_measurement_period 

Timestamp that describes time 

horizon of measured data. 

 

Table 2: Intra-day output interface table 

Variable name Variable annotation Variable description 

ID flexibility activation 
id_flexibility_activation_request 

ID flexibility value calculated for 

next time horizon 

Timestamp of flexibility 

activation 

id_flexibility_activation_request 

_timestamp 

Timestamp defining when 

building should activate ID 

flexibility  
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Conclusion 

ST ID module calculates total predicted consumption from the close to real-time SCADA (or 

smart meter) measurements and DA flexibility activation profiles. From DSO SCADA, ST ID receives 

real-time measurements that are averaged to 15 minute interval. The final output is ID flexibility 

activation (Figure I) 

 

Figure I. Energy managent submodules inteconnection 
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Annex I 

ID module database structure and it’s relations are described with Figure II.  

 

Figure II: Intra-Day module database tables and relations  

 

Database communication model is depicted with Figure III. The database communicates with other 

databases via TCP/IP protocol.  The general idea of communication protocol is allowing entity (DSO, 

buildings and retailer) approach to database tables of other entities with python scripts, which 

presents one of the layers of regular programs (such as mpc, ac opf, day ahead module, intraday 

module). Entity can directly connect to other databases.  Data privacy is guaranteed with entities 

access level to database. Every entity will have new account with read-only access to database. 

building will have read only access to the DSO and Retailer databases and vice-versa. For example, if 

the building has to deliver passive profiles to the DSO, the building just has to put the profiles into a 

certain table available to the DSO. The DSO will read this table at a certain time of day. After data is 
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read, data timestamp will be checked to determine if the data is fresh. Even higher level of privacy 

can be guaranteed if the access is provided only for tables with needed data for specific entity.  

The Python layer will connect to the database, read the data and write it to its own tables. The data 

structure of exchanged data will be formatted as JSON object. JSON data format is plain text which is 

easily readable by built-in Python JSON parsing libraries and easily convertible to other data types. 

Here is an example of a structure consisting of a 2x2 matrix A, 2x1 vector b and a description string:  

Model = '{"A": [[0.027734449084562574, 0.2975643267384046], [0.6371333688566387, 

0.38837159365408835]], "b": [[0.3884257461956241], [0.6990043851887695]], "description": "state space 

model matrices"}' 

Data will be stored on principles of dictionary (key:value), and items are separated by “,”.  

JSON data structure will be stored in database as varchar(2000) data type. 

 

Figure III Communication model between building and DSO, and communication model between building and retailer. 

Entities will have read-only access to other database output tables. Python program will automatically connect and read 

data and write to its own database 

 

Table I describes all communication events (DOD stands for day of delivery). Communication will be 

implemented with python scripts running on entity server defined with column ”Reads data” in Table 

I. Scripts will read entity data from entities described in table’s column “Puts data at disposal” at a 

certain time described with column “Time”. General data exchange structure contains objects: the 

first is json object with 15 min resolution energy profiles and time when first time horizon occurs, the 

second object is timestamp when data was created. In case there is no fresh data in the table, scripts 

will repeat the check 10 minutes later. Events will occur when values measured are higher than 

triggering values and only if it happens during reserved time windows contracted in advance (during 

long term contracting) or if the event happens before day-ahead defined time step for activation of 

flexibility (meaning the AC OPF predicted time t, but the event was on an ID triggered by 

measurements on 15-minute sample time or more and within the flexibility time window). Table II 

contains json definitions and data examples for non-scalar data.  Measurement units may be 

changed if necessary. 
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Table I Chronological communication events for ID module with detailed exchange structure  

Time 

(UTC) 
Data exchange 

D.5.2.1 

Nomenclature 
Reads data 

 Puts data 

at disposal 

All the time SCADA measurements (float) 
Scada 

measurements 
DSO(ID) 

DSO 

(SCADA) 

DOD, every 15 

minutes 
ID flexibility activation (float) 

Activation of 

needed 

flexibility 

 

Building DSO(ID) 

 

 

Table II Json definitions for dat exchanged in ID module 

Communication 

event ID 
JSON DATA 

General definition 
{“profile name”: [vector – float – 96 values], “Measuring unit”: “mu”, “Valid 

from”:“(timestamp yyyy-mm-dd hh:mm:ss)”} 

1 
{"ID_flexibility_activation": [0.0392156399009166], "Measuring_unit": " kW", 

"Valid_from": "2018-10-22 22:00:00"} 
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Annex II 

Intra-day operation is described with Figure IV. At the beginning of N-time interval, ID module gets 

SCADA measurements from the grid substation as an average value of N-1-time horizon. During N-

time intervals, ID module compares measured and predicted consumption. If the measured value is 

greater than predicted consumption, than ID module checks if the building can provide flexibility 

service. If building flexibility service is reserved for the next time period in long term contract and it is 

not called by DA module, then ID module calculates ID flexibility activation (algorithm is described in 

Table III).  Algorithm is based on extrapolation of real-time measurements; the extrapolated data is 

compared with DA predicted feeder consumption in order to check if the triggering events occurs 

earlier than forecasted in DA module. If the peek occurs earlier, id module cancels flexibility call by 

Day-ahead module. 

 

Figure IV: Intra-day module operations 

#profiles 

scada_measurements = 

predicted_feeder_consumption 

da_flexibility profiles 

 

from last 20 measurements:  

             extrapolate  for next 3 periods 

 

#for t in range(now, now+3 periods)  

compare extrapolilate data with predicted_feeder_consumption 

              if extrapolilate data < predicted_feeder_consumption: 

                           if da_flexibility_profiles [t+2] =! 0: 

                                           id_flexibility [t+2] = 0  

                           else: 

                                           id_flexibility [t+2] =   da_flexibility_profiles [t+2] 
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Executive summary 

One of the objectives of the project Smart Building – Smart Grid – Smart City (3Smart) is creation 

of an integrated and modular energy management tool for the DSO to use buildings as their assets 

and to utilize their flexibility in order to efficiently plan investment into the distribution grid. The tool 

is organized in two main submodules, Long-term and Short-term module. The Long-term module is 

used by the DSO for offline planning and it allows the DSO to plan their investments based on 

reserving building flexibility services by substituting CAPEX with higher OPEX paid to the building for 

providing services. Long-term Annual module calculates the DSO needed flexibility and Multi-Annual 

module calculates the flexibility service fees (activation, reservation and penalty prices). On the other 

hand, short-term module is used by the DSO to optimize usage of flexibility services and schedule. 

Day-ahead module is used for determining time windows for utilizing daily flexibility coming from 

reservation windows in the long-term contract and the intra-day module is used for improving daily 

schedule.  

The focus of deliverable 5.4.3 is on energy management tools interfaces. Deliverable 5.4.3. has 4 

outputs, one for each submodule. The deliverable explains every variable that is used as submodule 

inputs and describes the final output of the modules. Database outlook is described in Annex 1 while 

submodules algorithms and logic are provided in Annex 2. This document presents Long-term Annual 

module interface tables. 
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1 Introduction 

An important part of the deliverable is the description of the long-term module functionalities from 

the DSO point of view, as well as that of a distributed demand response provider, in the market 

environment. Currently, neither the DSO or demand response providers participate in the market. 

The market, in this deliverable, is seen through participation of multiple stakeholders exchanging 

money and services in a transparent way either through tenders or, more preferably, at power 

exchange. This means that the DSO does not have any information of the accepted demand profiles 

from its users and operates the network based on vast experience and available historical data. On 

the other hand, not enabling market access to the distributed energy sources results in overbuilding 

and underutilization of the DSO assets. 

Integrated tool for Long term energy management of building for DSO, installed with the 3Smart 

project, is divided in two modules: Annual and Multiannual.  

Each submodule is presented via an interfacing table that explains which data is used by the 

submodules as inputs and what is the final output data. The algorithms behind are explained in more 

details in the annexed document. 

1. Calendar submodule 

2. Calculation input submodule 

3. Flexibility calculation submodule 

4. DSO flexibility table (Output) 

The modules are designed, commissioned and tested on different pilot location.  

In this deliverable the focus is put on Annual modules and its variables and algorithms 

1.1. Long term Annual module interface tables 

An important feature of the LT module is that inputs and outputs of the module are directly written 

from/in database of other modules; namely the DSO flexibility table serves as an input for the 

Multiannual module via database. The following Input/output table describes not only the database 

entities but the LT excel inputs and outputs as well. 

Table 1. Long-term Annual input interface table 

Variable name Variable annotation Variable description Source 

Calendar Calendar 

The Calendar contains the 

following columns: Date, 

Scenario Name-> here the 

DSO staff has to enter all 

days of the given year and 

inbuilt function seeks the 

type of day: WEEKDAY, 

SATURDAY, SUNDAY. These 

type of days relevant for 

scenario calculation in utility. 

Special days - manual entry-> 

the inbuilt function can not 

DSO Staff 

manually enters 

the input data for 

Calendar. 



Smart Building – Smart Grid – Smart City (3Smart) 

Deliverable D5.4.3 – Final grid-side energy management software module 
 

 

 

 

Project co-funded by the European Union through Interreg Danube Transnational Programme  3 
 

recognise the special 

national holidays therefore 

DSO Staff has to enter them 

and function will copies 

them into Scenario Name 

column. 

Scenario Name, Count(): 

Here the inbuilt function 

calculates the number of 

different type of days for 

DSO flexibility table where 

the number of different type 

of days will be relevant. 

Calculation input Calculation input 

Contains of: Thermal limit of 

cable/ line and Operational 

limit for all months, Year, 

Time- Month – Type of Day 

load flow calculation result 

matrix. These inputs are 

used for DSO flexibility table 

where the needed flexibility 

for DSO is calculated. 

DSO Staff 

manually enter 

the necessary 

data. The load 

flow calculation 

results are 

extracted from 

NEPLAN. 

 

Table 2. Long-term Annual oputput interface table 

Variable name Variable annotation Variable description 

Flexibility calculation Flexibility calculation 

In Calculation input table the 

user can push the button: Show 

calculation. After this action the 

Flexibility calculation table 

displays the results for the 

given month for sake of 

checking the results by DSO 

Staff. 

DSO Flexibility table dso_flexibility_table 

This table contains the needed 

flexibility by DSO for the given 

contractual period which is a 

crucial input for Microgrid 

module (the Microgrid module 

sends the answer of the 

Building in terms of available 

flexibility service by Building). 

Content: Month, Type of day, 

Flexibility requirement [kW], 

Time interval (Start), Time 

interval (Length), Flexibility 

requirement [kWh], Pcs of type 

of days 
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This Variable appears in the 

database as a table, but 

contains additional inputs for LT 

workflow: PK.id; FK.contract 

and year/month. They refers to 

the Building name, Contract ID, 

the contractual periode. 
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Conclusion 

Web based workflow tool is developed for both the Annual and Multiannual modules. The central 

point of LT workflow is an excel (“3Smart_LT module_v4.xlsm”) which requires manual inputs from 

DSO staff. DSO staff has to be aware of this manual interventions, nevertheless the LT workflow gives 

a logical guide for it. 

The interconnection of the long-term and short-term modules of the grid-side EMS is crucial for 

running daily load flow calculations. The daily AC load flow calculation will use the distribution 

network and load parameters from the standardized database/ or table prepared by the DSO and the 

basic logic is similar to the long-term scenario-based calculations. This AC OPF (optimal power flow) 

module completes the optimization calculation described in the short-term module description. An 

important output of the LT module is the DSO and Building flexibility table which is a key input to the 

AC OPF to precisely calculate the needed flexibility utilization from offered amount and time interval. 

Furthermore, another key interconnection is between Long Term module and Building side Microgrid 

module: based on DSO Flexibility table results (submodule) the Microgrid will answer with a so called 

Building Flexibility table which contains the capability of the Building to provide requested flexibility 

service. 

Important changes appearing in D5.4.3 when compared to module described in 5.3.1 Open software 

module for long-term level of grid-side energy management- Annual module description and in its 

basic elements: 

 The former version of module contained a more fragmented LT excel where the following 

submodules existed: 

o Pre-Input_Legend,  

o Pre-Input_Dates,  

o Calendar which  

These are now organised into one submodule: Calendar. This submodule contains all relevant 

information and makes the usage of submodule easier. 

o Pre-Input_Scenarios, 

o Processed input  

These are organised into one submodule, into Calculation input. The submodule contains all relevant 

information as the former submodule, however makes the usage of submodule easier. 
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Annex I 

1. Database architecture 

The structure is envisioned in a way that the output tables of one entities database are defined in the 

same way as the input tables of another entities database, which makes understanding of the 

database structure a crucial part of the development process. The Long Term database is not 

separated into Annual and Multiannual ones, the building_flexibility_table and 

flexibility_unit_prices_and_penalty belong to Multiannual, the other part of database belong to 

Annual part.  

 

Figure 1 – Long-term database tables and relations 
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2. Communication events between the modules related to long-

term grid-side operation 

The below table describes the communication mechanism of the LT workflow which contains steps 

regarding both Annual and Multiannual modules. The main characteristic of the description is to 

focus on Grid-Building interaction and related database manipulations. 

Table 3. Chronological communication events with detailed exchange structure 

ID 
Time 

(UTC) 
Data exchange/ activity 

D.5.3.1 (Annual and 

Multiannual) 

Nomenclature 
module 

Reads 

data 

 Puts 

data at 

disposa

l 

Tri-gger 

1 

till 

December, 

before 

contract 

agreement 

Calculation of flexibility needs, 

prices, penalty and quality of 

service by using “ 3Smart_LT 

module_v3.xlsm” 

Result: DSO Flexibility 

table; Flexibility unit 

prices,penalty; Output 

for long term contract 

sheets 

LT 

module 

DSO 

(staff) 

DSO 

(staff) 
0 

2 

till 

December, 

before 

contract 

agreement 

Importing results of  “ 3Smart_LT 

module_v3.xlsm” 

Result: DSO Flexibility 

table; Flexibility unit 

prices,penalty; Output 

for long term contract 

data base tables 

LT 

module 

DSO 

(LT)(script

1) 

DSO 

(staff) 
0 

3 After step 2 
Building EMS Microgrid module is 

fetching data from LT database 
 

Microgri

d 
Building 

DSO 

(LT) 
0 

4 After step 3 Building calculate flexibility offer 

Result: Building 

Flexibility database 

table, (Microgrid 

database) 

Microgri

d 
 Building 0 

5 After step 4 
 DSO (LT) module is fetching data 

from Microgrid database 
 LT 

DSO (LT) 

(script2) 
Building 0 

6 After step 5 
Generating file from Building 

Flexibility table 

Result: Building 

Flexibility table in Excel 
LT 

DSO 

(staff) 

DSO 

(LT) 

(script3

) 

0 

7 After step 6 

Contract preparation by DSO, 

inserting Building Flexibility table 

into “ 3Smart_LT module_v3.xlsm” 

Result: Output for long 

term contract sheet 
LT  

DSO 

(staff) 
 

8 After step 7 
Acceptance/Rejection of Building 

offer 

Result: Offer 

acceptance sheet 

(Yes/No) 

LT  
DSO 

(staff) 
 

9 After step 8 

Importing Output for long term 

contract sheet of  “ 3Smart_LT 

module_v3.xlsm” 

Result: The details of 

contract in Database 
LT Building 

DSO 

(LT) 

(script4

) 
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Annex II 

Logic of Open software module for long-term level of grid-side 

energy management - Annual module  

1. Functional description of the long-term operation 

This chapter contains functional and everyday operational description of the long-term module, 

based on and relating to the D5.1.1. document. It is important to note that day-to-day operation of 

the long-term and the short-term modules are interconnected: 

- the two modules use similar logic, 

- the long-term module is a data source for the short-term module and Building side EMS as 

well. 

1.1 Inputs, outputs and functions of the long-term module 

The envisioned operation of the long-term module is described by the following sequence diagram. 

The inputs and functions of the various participants are listed below the diagram (an output of a 

party corresponds to an input of another participant). 

DSO Retailer Grid Side EMS Building (BEMS)

Long term planning

DSO Flexibility table

Needed flexibility (time, extent), 

cost of reserved service, cost of 

activation, asking contract

Portfolio analysis

Sending DSO needs, asking contract

Sending Building Flexibility table

Offered contract

Network calculation based on gathered data

Contract preparation

Offered Contract

 

Figure 2: Long term planning sequence diagram 

 

The following tables describes the above sequence diagram steps from input, output and activities 

point of view, this is basically follows a business logic and not a database manipulation. 
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Input list for Grid-side EMS: 

Table 2 – Inputs for Grid-side EMS 

ID Name of Input Description Quality requirement 

LtI_1 Network parameters 

and load curves for daily 

LF calculation 

Direction: 

DSO → Grid-side EMS 

(Database/table with 

standardized inputs) 

The D5.4.1. documents serve as 

inputs. The necessary data to build 

grid models for simulation: network 

parameters, load profiles at each 

node or load profiles of the given 

feeder and the connected 

customers. The load profiles either 

result from remote measurement 

based on AMR, or are derivates 

from the Synthetic Load Profiles 

(SLP) used in DSO which can differ 

by customer types. 

Both the network data 

and the load data should 

be detailed enough for the 

short-term daily LF 

submodule to be able to 

run grid simulation daily, 

i.e. network parameters of 

the lines, nodes, 

transformers, load data at 

nodes, voltage data at 

selected busbars (if 

available). 

Ltl_2 Operational limit table 

of the DSO 

In order to compare the load curve 

with the network limits the DSO has 

to deliver a so-called limit table 

which describes the operational 

limit of the network (e.g. 70% of the 

thermal limit of the cable, in kVA, 

etc.) 

The table has to describe 

obviously the limits, in this 

way the load curve or 

voltage band (results of LF 

calculation) can be 

compared with the 

operational limits. After 

the comparison, the result 

will be the needed 

flexibility (time, amount). 

LtI_3 Long-term planning 

results 

Direction: 

DSO → Grid-side EMS 

The DSO must carry out the 

investigation in its own interest 

about the network part which 

shows any constraints that can be 

mitigated either by shiftable load or 

any renewable adjustment related 

to the given network part. DSO runs 

several scenarios which consider 

first the passive load profile, after 

that with DSO estimated flexible 

profiles, then with the delivered 

flexible load profiles by Prosumers: 

these calculations should result in 

flexibility needs in kW and 

activation time in Date, hour based 

on comparison of load flow 

calculation and the operational limit 

of the given network part. 

Operational limits also constitute a 

separate table which has to be sent 

to the Grid-side EMS. (Further 

details on limits and flexibility 

calculation will be given in chapter 

DSO has to answer the 

following points: 

1. needed flexibility 

amount for 

specific days of 

the year  

2. activation time -

flexibility needs 

pairs for specific 

days of the year 

Proposed price for the 

given flexibility: in case of 

reservation in EUR/kW, in 

case of activation in 

EUR/kWh. Reservation 

should contain: flexibility 

needs - activation time 

and duration pairs, 

frequency, price (in 

EUR/kW). Activation 

should contain: flexibility 

needs - activation time 

and duration pairs, 
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5.) In addition, DSO has to calculate 

the avoidable cost of the traditional 

network intervention, i.e. the 

investment and the foreseeable 

operation cost of a network which 

would be built/upgraded instead of 

the constrained network part. This 

will be the lower limit of the total 

price of the flexibility service, which 

equals to reservation and indicative 

activation prices multiplied by the 

requested frequency of the 

services. 

frequency of services, 

indicative price per 

activation (e.g. EUR/kWh). 

LtI_4 Building Flexibility 

Direction: 

Building → Grid-side 

EMS 

The given Building considers the 

unit prices (both for reservation and 

activation) calculated by DSO and 

based on it the Building could 

calculate the flexibility service (kW, 

time interval). 

The Building returns an 

answer for the Grid-side 

EMS request: the amount 

of flexibility in kW and 

time intervals. 

 

Input list for Building: 

Table 3 – Inputs for Building 

ID Name of Input Description Quality requirement 

LtI_5 Offer for a contract 

Direction:  

Grid-side EMS → 

Building 

The Grid-side EMS collects all needs 

from the DSO regarding the part of 

the network with potential 

providers of flexibility service (point 

of view for DSO). Based on Building 

answer in terms of flexibility 

contract and unit prices the Grid 

side EMS will create a long term 

contract offer. 

Needed flexibility amount, 

time and duration for 

specific days of the year 

with price. 

 

Input list for DSO: 

Table 4 – Inputs for DSO 

ID Name of Input Description Quality requirement 

LtI_6 Offered contract with 

prices 

Direction:  

Grid-side EMS → DSO 

Based on Building flexibility service 

and already calculated unit price the 

Grid side EMS creates a long term 

contract which will be received both 

by DSO and Building. 

Offered flexibility amount, 

time and duration for 

specific days of the year 

with prices. 

 

Functions of Grid-side EMS: 

Table 5 – Grid-side EMS functions 

ID Name of Function Description Result/Output 

GSEMS_F1 Reception of network 

parameters and load 

curves for daily LF 

The Grid-side EMS receives the 

network parameters and load 

curves, examines the 

Prepared data in 

standardized database 

(table) with distribution 
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calculation preparation completeness of the data and 

with help of LF calculator it 

calculates the needed flexibility 

for DSO. The network 

parameters in LF calculator will 

be inserted into short term 

database as well for DA AC OPF. 

 

network and load 

parameters for daily LF 

calculations, the LF can 

run based on the received 

data and give reliable 

results. Long term 

network data can be used 

in short term database. 

GSEMS_F2 Reception of Long-

term planning results 

and creation of 

contract offer for 

Buildings based on 

them 

The Grid-side EMS receives the 

Long-term planning results, 

examines their completeness, 

inserts them into the existing 

portfolio, calculates an own 

price based on portfolio 

optimization (i.e. simulates the 

behaviour of the Aggregator 

with some assumed margin), 

gives contract offer for Building. 

A structured offer for the 

Building. 

GSEMS_F3 Delivery of long-term 

contract for DSO 

The Grid-side EMS receives the 

Validated contract with prices 

from the Buildings, compares 

them with the DSO needs, 

makes a portfolio optimum, 

gives long-term contract for the 

DSO for the given network part, 

completed with the necessary 

information (offered flexibility 

amounts, activation times and 

durations, offered prices, 

penalty consideration, etc.) 

Validated LT contract both 

for DSO and Building. 

 

Function (Activity) of Building: 

Table 6 – Building functions 

ID Name of Activity Description Result/ Output 

B_F1 Techno-economic 

calculation based on 

long-term contract offer 

The building considers the DSO 

flexibility needs and the given unit 

prices and create a Building 

flexibility service answer (Building 

flexibility table) with amount of 

flexibility in kW and corresponding 

time intervals. 

Validated contract with 

prices or/and modification 

proposals for Grid-side 

EMS. 

 

Function (Activity) of DSO: 

Table 7 – DSO functions 

ID Name of Activity Description Result/ Output 

DSO_F1 Provision of data for 

daily LF calculation 

Provision of the input data for the 

daily LF calculation  

D5.4.1 document 

DSO-F2 Provision of draft long-

term contact  

Provision of the input data for 

long-term contact 

Long-term contract data 
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1.2 Connection with the short-term module 

The interconnection of the long-term and short-term modules of the grid-side EMS is crucial for 

running daily load flow calculations. The daily AC load flow calculation will use the distribution 

network and load parameters from the standardized database/ or table prepared by the DSO. The 

assumed logical connection of the long-term calculation method and AC OPF is described in the flow 

chart diagram in Figure 3. What is important is the DSO and Building flexibility table from LT excel, 

because AC OPF also will use the needed and offered flexibility both in term of amount and time 

interval. 

The envisioned operation of the short-term module is described by the sequence diagram below:

DSO Retailer Grid Side EMS Building (BEMS)

Day-ahead operation DA schedule of the Building

Sent DA prices

Uploading to stock market

DA prices

Modified DA schedule

Modified DA schedule with flexibilityBalance energyRetailer has the opprotunity to 

get flexibility for balancing
Request for flexibility

DA AC power flow

Grid Side EMS calculates the 

needed flexibility for DSO based 

on already available data, 

examines the remaining part of 

Flexibility portfolio

Flexibility availability with prices

Optimisation

Flexibility needs based on DA LF/input for ID opt.

 

Figure 3: Day-ahead operation sequence diagram 

The following two figures are extracted from Microsoft Excel. They show an example of the flexibility 

requirement calculation. 
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Figure 4: The logic of DSO flexibility needs calculation 

 

Figure 5: Visual example of logic of DSO flexibility needs calculation 

The figures above demonstrate how the Grid-side EMS should calculate the needed flexibility based 

on daily LF calculation and predefined parameters (operational parameters of the network) in the 

short-term module. The daily LF calculation will be the basis of the activation in the intraday period: 

1. 1st column: daily LF estimates the load curve of the selected network element. 

2. 2nd column: Grid-side EMS shows the load which exceeds the operational limit. 

3. 7th column: theoretical value of the needed flexibility. The Grid-side EMS calculates the 

difference between load curve and the operational limit of the network. E.g. if 100 kW would 

be the thermal limit of the line and 70% would be the operational limit, and the load curve 

Date Time

Estimated load by 

AC power flow [kW]

Estimated load by AC 

power flow which 

exceeds the Operational 

limit [kW]

Operational 

limit Pop[kW]

Network limits 

Pmax [kW]

Predefined Operational 

limit (% of Pmax)

Activated Flexibility needs 

(=Estimated maximum 

load- Operational 

limit(%)*Pmax)[kW]

Calculated Flexibility 

needs (=Estimated 

maximum load- 

Operational 

limit(%)*Pmax)[kW]

Activation 

Price/kWh Duration start end

2017.05.22

15:30 60

0 70 100 70,00% 0 0

25 Eurcent 3 hours
Signal from the 

DSO

3 ours from “on”-
signal, or by earlier 

signal from the DSO

2017.05.22

15:45 65

0 70 100 70,00% 0 0

25 Eurcent 3 hours
Signal from the 

DSO

3 ours from “on”-
signal, or by earlier 

signal from the DSO

2017.05.22

16:00 75

75 70 100 70,00% 23 5

25 Eurcent 3 hours
Signal from the 

DSO

3 ours from “on”-
signal, or by earlier 

signal from the DSO

2017.05.22

16:15 75

75 70 100 70,00% 23 5

25 Eurcent 3 hours
Signal from the 

DSO

3 ours from “on”-
signal, or by earlier 

signal from the DSO

2017.05.22

16:30 80

80 70 100 70,00% 23 10

25 Eurcent 3 hours
Signal from the 

DSO

3 ours from “on”-
signal, or by earlier 

signal from the DSO

2017.05.22

16:45 80

80 70 100 70,00% 23 10

25 Eurcent 3 hours
Signal from the 

DSO

3 ours from “on”-
signal, or by earlier 

signal from the DSO

2017.05.22

17:00 85

85 70 100 70,00% 23 15

25 Eurcent 3 hours
Signal from the 

DSO

3 ours from “on”-
signal, or by earlier 

signal from the DSO

2017.05.22

17:15 87

87 70 100 70,00% 23 17

25 Eurcent 3 hours
Signal from the 

DSO

3 ours from “on”-
signal, or by earlier 

signal from the DSO

2017.05.22

17:30 90

90 70 100 70,00% 23 20

25 Eurcent 3 hours
Signal from the 

DSO

3 ours from “on”-
signal, or by earlier 

signal from the DSO

2017.05.22

17:45 92

92 70 100 70,00% 23 22

25 Eurcent 3 hours
Signal from the 

DSO

3 ours from “on”-
signal, or by earlier 

signal from the DSO

2017.05.22

18:00 93

93 70 100 70,00% 23 23

25 Eurcent 3 hours
Signal from the 

DSO

3 ours from “on”-
signal, or by earlier 

signal from the DSO
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Network limits Pmax [kW]

1st local Maximum 

value of the load 

Thermal limit of the 

line (4th column) 
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2nd local 

Maximum value of 

the load curve 

The section of the 
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load exceeds the 

operational limit 
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Estimated load 

curve (1st column) The section of the load 

curve where load 
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Required flexibility at 
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(7th column) 

Required flexibility at 18:00 

(local maximum), 93kW-

70kW=23kW 

(6th column) 
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shows 87 kW, then the needed flexibility is 17 kW. If the value is positive, then the Grid-side 

EMS should send an activation signal to the Building.  

In other words: the system finds the extreme values of the examined variable based on daily LF 

calculation; this procedure is executed on a daily basis. The Grid-side EMS examines the load curve 

and calculates the differences between the pre-set limit and the estimated curve. The start of the 

activation time window is defined as the period when the curve exceeds the operational limit for the 

first time. The deactivation time corresponds to the time when the curve falls below the operational 

limit. 

2. Running scenario simulations for long-term planning 

According to Deliverable D5.1.1. Grid-side EMS concept and information exchange interfaces 

definition, the long-term module can be divided into 4 main steps: 

1. Initial distribution network state calculations 

2. Calculating DSOs flexibility needs 

3. Calculating costs of flexibility depending on the source 

4. Contracting flexibility – planning future distribution networks 

This chapter covers step 1 of the above, the need for scenario simulations and the method of running 

the initial scenario calculations are described. 

2.1 Network planning and the flexibility option 

Traditionally, DSOs ensure the security and reliability of operation, and the required quality of service 

by reinforcing the network. If wisely exploited, demand response creates a chance to postpone the 

costly conventional investments that should be completed in a few years. 

Demand response can remedy several issues, including: 

- keeping voltage within the allowed operational range 

- congestion management, thermal limit of cables and overhead lines 

- operational limit of lines (e.g. due to a potential n-1 state, weather conditions) 

- capacity of transformers 

- peak shaving, loss reduction 

- asymmetry. 

First and foremost, one needs to run load flow simulations according to its conventional network 

planning approach. In the next few paragraphs, a brief background of calculation methods is 

provided. 

Distribution network planning at E.ON: 

The NEPLAN software is used for network modelling. First, the network topology and equipment data 

are exported from the GIS software. For high and medium voltage network planning, measurement 

data from winter and summer national measurement days and the SCADA system, and long-term 
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load forecast based on time series forecasting are used. Currently, the planning of the MV network is 

based on the scenario with no dispersed generation infeed. The measured distributed generation is 

added to the measurements at HV/MV substations to determine the maximum load of each MV 

feeder. The improvement of this planning method is under progress. Currently we do not run time 

series load flow for the MV calculations but we plan to do so, or at least examine more static states 

in the future. 

 

Figure 5: Network planning logic 

The weak points of the grid are identified by analyzing line cross section, current, voltage drop 

(normal and n-1), loading of elements (normal and n-1), connectable power (normal and n-1) and 

network loss. (Connectable power: based on the allowed range of voltage and loading limits, the 

amount of extra load (in 0,5 MW steps) that could be connected to each node is determined.) 

The low voltage distribution network planning is based on time series LF calculation. Regarding 

distributed generation, both scenarios are considered, i.e. with and without distributed generation 

infeed. On LV network both measurements and substitution profiles (the yearly consumption of the 

consumers and profile types) are used, and a series of 8760 LFs is run, so a calculation for each hour 

of each day in a year. The calculation results are compared to actual measurements if available – the 

comparisons have proved this combined method is promising, and we aim to adapt our MV 

calculations according to it. 

 

Figure 6: Network planning logic with consideration of DG 

The weak points of the grid are identified by analyzing line cross section, current, voltage drop, 

loading of elements and network loss. Balanced 3-phase systems are modelled, and the impact of 

asymmetry is evaluated afterwards when elaborating the results of the LF calculation. 

2.2 Scenarios and calculation procedure 

load increase

load

topology, equipment data
GIS

NEPLAN

Calculations

States: normal and n-1

Scenarios: 1, without DG

Time: 1 calculation per 

year usually, 5-year 

snapshots

Measurements

• National Measurement Day

• SCADA: HV/MV substations, 

outgoing lines

• Remote measured consumers

• Distributed generation

Load estimation

• HV/MV substation long-term 

load forecast

• large consumers' behavioural

trends, connection requests

Standards & Regulations,

Network development guideline

load increase

load

topology, equipment data
GIS

NEPLAN

Calculations

States: normal

Scenarios: 2, with DG and 

without DG

Time: time series LF 

calculation, 1 year with 60-

minute time increment, 3-

5-year snapshot

Measurements

• Yearly consumption and load 

profile types

• Remote measured consumers

• Distributed generation

Load estimation

• total & residential electricity 

consumption by municipality

• large consumers' behavioural

trends, connection requests

Standards & Regulations,

Network development guideline
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Running time series load flow analysis is a reasonable way to estimate the annual or seasonal 

flexibility requirements: the number of activations, the time, the duration and the size of the desired 

flexibility service. The D5.1.1. document suggests running 3 conceptually different AC load flow 

calculations for the designated days, weeks, seasons. All LFs would be time series calculations, 

therefore load (and generation) profiles for entire days would be used. The proposed calculations 

are: 

1. AC LFs with conventional approach to loads, thus the traditional LF calculation without 

flexible loads. This involves calculation with load forecast (demand and generation, increase 

or decrease) as well, according to the DSO’s own network planning methods. 

2. Repetition of the AC LFs with the introduction of flexible loads. New profiles should be 

created for the estimated new load patterns of prosumers, the “flexible load substitution 

demand curves”. Estimating the flexible consumers’ behaviour is a key step for two reasons. 

Although we can derive the needed flexibility for the whole network part in question, we 

need to know the available flexibility of the prosumers, too. Theoretically, it is possible to 

satisfy the total amount of the needed flexibility (if the Aggregator gathers all possible 

shiftable loads alongside a MV line), but in our case with only one building offering flexibility 

service, perhaps only a part of the DSO's demand can be realised by this sole shiftable load. 

The second reason is that in other period(s) of the day (or preceding/following day) the 

building eventually will consume the energy it „lost“ to supply flexibility. A simple example is 

in the next figure, where the building compensates the energy deficit in the morning and in 

the evening. The DSO should keep that in mind and make sure that the modified demand 

curves do not compromise the network security. 

 

Figure 7 – Flexibility demand and compensation 

3. Demand patterns are provided by the flexible prosumers themselves. These profiles are then 

run through the AC LF. 
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Usually, as the load pattern varies throughout the year, DSOs examine multiple network states while 

planning network upgrades and investments. Presumably the planning methods already cover 

several of the following scenarios, whether LF series with daily profiles or single LFs are run for the 

designated times: 

- time of year: seasons, months, 

- day types: weekdays, Saturdays, Sundays (holidays), 

- time of day: time of peak and base load during the day in case of “static” LF, or time series LF 

with 24-hour profiles (with quarter hourly or hourly resolution), 

- meteorological conditions, 

- calculation with and without renewable or distributed energy sources, 

- calculation with different network configurations (e.g. n-1 state). 

For 3Smart, 36 scenarios are derived from E.ON’s low voltage calculation method. Load values 

derived from actual measurements are used where available (mostly larger customers with AMR 

devices) and several substitution profiles are used for the rest. These profiles yield the 36 scenarios: 

- for each profile type, we distinguish between the 12 months, 

- in each month, there are 3 different daily load curves: weekday, Saturday and Sunday. 

Each scenario means a calculation with the load curves for one day. E.ON usually calculates with 

hourly resolution (24 values for a day), but if other DSOs have the option to calculate with 15-minute 

resolution (96 values for a day), that is great. If 12 profiles for the months (for example just for each 

season) or different profiles for Saturday and Sundays (just weekday and weekend) are not used, that 

can be sufficient and means less than 36 scenarios. 

The step-by-step calculation procedure is described in the flow chart below. Sections 4.3, 5.1 and 5.2 

are marked with the capitals in the figure. The linkage between the AC Optimal Power Flow 

calculation (for the short-term module functionalities) and the traditional load flow calculation is 

virtual, because the AC OPF will be run on similar basic data (GIS data) but from time perspective, the 

calculation is separated. The long-term calculation precedes the short-term, and the long-term 

calculation frequency is much smaller. 
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Figure 9: Logical process flow chart of DSO flexibility needs calculation 

2.3 Input data of scenario simulations 

A Grid model 

The first step is to determine and model the part of the network that will be investigated. 

Presumably this grid model was already built for deliverable D5.4.1. “Grid models for grid simulation 

in professional simulation tools”. The technical parameters provided in the D5.4.1. document can be 

regarded as the database with the necessary network parameters. The figure below represents 

E.ON’s NEPLAN model for 3Smart: a MV feeder with 4 MV/LV substations. 

 

Figure 10: Example for a Grid topology in one pilot site (Debrecen) 

B, K: Customers and load data 

The consumers and generators that are connected to this part of the grid should be identified and 

modelled, or more conveniently, sum measurements (e.g. total load of a transformer) can be used if 

available. Gathering and allocating the load data can be a difficult process, as there are several 

options. You may have continuous measurements, estimated data with load profiles, or the 

combination of the two. 

C, D, E: Measurements 

If synthetic load profiles cannot be used, the sole data source for creating load profiles are 

continuous measurements. If some or all customers are (remotely) measured and their consumption 

is available, individual profiles (load curves) can be created for the load elements in the model that 

represent these consumers.  

If individual measurement is not available for all customers, a collective profile can be allocated to 

the rest based on a general network measurement. For example, there are SCADA measurements in 

the HV/MV substations for the medium voltage feeders. In the grid model the measured sum value is 

assigned to the first element, this is the total load of the MV line. The remotely measured consumers’ 
values are assigned to their individual load elements. The rest of the load is allocated to the 

remaining load elements (one for each MV/LV transformer station) in relation to the nominal power 

of the MV/LV transformers but with the same profile (so their load curves normalized are all the 

same). Regarding the load allocation, other methods can be used (for example, E.ON plans to 

consider the number and yearly consumption of the customers soon). 

G, H, I, J (with F): Load profiles (with measurements) 
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E.ON uses load profiles along with the yearly consumption and the profile type of each user. The 

loading curves were derived from the profiles used for forecasting the consumption of profile-settled 

users. There are different curves for workdays, Saturdays and Sundays in each month. There are two 

categories for domestic consumers (normal and direct load control), 5 for business consumers and 

categories for continuous consumption, e-mobility, renewable heating/cooling and solar panels as 

well. The direct load control profile was altered, and a seasonal profile was introduced for holiday 

resort areas. Figure 11 represents the daily profile curves of the more common profile types for the 3 

scenarios in January (weekday, Saturday and Sunday). 

 

Figure 11: Example for Synthetic Load Profiles (SLP) 

To demonstrate the seasonal variations as well, the following figures represent the same profile 

types for 36 scenarios. The daily profiles are sorted after one by one in this order: January weekday, 

January Saturday, January Sunday, February weekday, February Saturday, February Sunday, etc. 
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Figure 12: SLP in terms of different type of days 

 

Figure 13: Domestic SLP 
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Figure 14: SLP of customer with Direct Load control (e.g control of boilers via radiowave) 

Household size solar power plants are modelled as common loads with a negative load profile. Yearly 

generation is calculated from their built-in capacity (kVA), it is assumed that they would operate at 

full power for 1100 hours per year (a utilization hour specific for Hungary). The consumption of 

consumers with solar power plants is modified after reviewing their past measured yearly 

consumptions. For every month, the first 7 days are calculated without PV generation (representing 

cloudy weather) and the remainder of the month with PV generation (clear weather). Figure 15 

demonstrates the daily PV profiles, one for each month. 

 

Figure 15: SLP of PV generation 
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The yearly consumption and the profile type of the customers are obtained from SAP and recorded in 

the adequate NEPLAN variables. To prepare the individual load curve of these customers, the scaling 

factor of the respective profile is multiplied by the yearly consumption for each LF calculation. 

If there are remotely measured customers in addition to the profile-settled users, individual profiles 

(load curves) can be created for the load elements in the model that represent these consumers. Like 

in the previous case with measurements, steps D and F are basically the same. These measurements 

are usually rearranged so that for each hour the highest values are sorted to the first week (the days 

without PV generation) to get the worst-case scenario. 

L: Time series load flow calculation 

Run the LF simulation for each scenario. For example, one January weekday means 24 (hourly) or 96 

(quarter hourly) calculations. 

M: Calculation results 

Save the results of those network elements that are crucial, interesting, where there is a chance that 

technical network constraints are violated or where specific technical parameters need to be 

improved. In the next chapter the total load of the MV line is examined, so the results of the first 

element after the feeder node (marked with a red rectangle in the figure) are needed. 

 

Figure 16: Total load element on the grid topology  
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3. Definition and calculation of the limit values and flexibility 

tables 

This chapter covers the second main step of the long-term module, calculating the DSO’s flexibility 

needs. The method of determining the flexibility need is described and illustrated with figures. 

3.1 Results analysis 

N: Setting the limit values for critical network elements 

Analyze the available data – the results of scenario simulations and/or measurements. Identify the 

weak points of the network. Define the limits. It can be the thermal limit of the cables, the 

operational limit of lines (e.g. 70%) or transformers (e.g. 60-80% in summer), minimum and 

maximum allowed voltage, etc.  

In this example, the total load of the medium voltage feeder is observed. Both simulation results and 

past measurements are available. Figure 17 demonstrates the measured hourly average, maximum 

and minimum current in January 2018. Figure 18 represents the quarter hourly averages in 2016. The 

figures demonstrate that the load is the highest in the winter months and that it is remarkably 

variable in a brief period (the city’s transport company operates a transformer station on this MV 

line). However, it is far below the cables’ thermal limit. The grid-side EMS can be tested with peak 

shaving in the autumn and winter months based on the average values. In this example, the 95% 

percentile of the whole yearly data is picked, which is about 40 A. The same can be done for just 

workdays, or different values can be set for the summer period for example. 

 

Figure 17: Measured current (1-hour values) 
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Figure 18: Measured current (15-minute values) 

O: Comparison 

Examine the scenarios one-by-one to estimate whether the set limits are violated. If only synthetic 

profiles are used, that is already a normalized load profile. In this example, January weekdays are 

examined. In the simulation both synthetic load curves and measurements were used. Several days 

were simulated due to the measurements, so a normalized curve was created. In the next figure, the 

thin lines represent the individual days and the thick red line represents the normalized scenario. 

 

Figure 19: January weekdays simulation 
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Measurements are available for the appointed network element and can be analysed as well. The 

measurements for weekdays in January are examined. This was in 2016, hence the lower values. 

 

Figure 20: Measurements from January weekdays 

All extremities should be excluded, use credible data only. January 1 was a holiday and on January 28 

there was a load increase due to temporary network reconfiguration. In figure 21, the thin lines 

represent the selected days and the thick red line represents the normalized profile created from 

them by calculating the average value for every quarter hour. 

 

Figure 21: Measurements from selected January weekdays 

The normalized scenario should be compared to the set limit. In this case the 40 A limit is exceeded 

in the morning and in the afternoon hours on a typical January weekday. 
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Figure 22: Normalized January weekday 

3.2 Calculation of flexibility 

P: Determination of the needed flexibility 

The next step is to translate this comparison into flexibility needs in terms of power/energy, duration 

of service and time slots. Figure 23 describes the load curve the DSO would like to achieve and the 

corresponding flexibility requirement. 

 

Figure 23: January weekday with flexibility demand 
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For this first, January weekday scenario, there are two periods when the limit is exceeded.  

- The first time slot is between 7:15 and 9:45, for a duration of 2,5 hours. The maximum 

difference is 7,9 A, the DSO requests a load decrease of 150 kW. 

- The second time slot is between 13:30 and 17:15, for a duration of 3,75 hours. The maximum 

difference is 4,3 A, the DSO requests a load decrease of 80 kW. 

The above two are the DSO’s flexibility needs for January workdays – in 2018 these would have been 

valid for January 2-5, 8-12, 15-19, 22-26 and 29-31. 

For the 3Smart pilots of course, one building may be able to deliver those flexibility needs just 

partially, and the building will consume that shifted energy in other hours. Theoretically, security 

control would be the next step. This involves: 

- running calculations with worst case scenarios to make sure the grid stays safe throughout 

the day, 

- checking for a few years ahead to see if defined flexibility requirements remain feasible 

solution when including load forecast,  

- suggesting restrictions if necessary, e.g. regarding the period between the two flexibility 

events.  

The next figure illustrates an example when the DSO’s total flexibility request is delivered and the 

prosumers compensate the load shift between 1:00-3:00, 5:00-6:00, 18:00-19:00 and 20:30-0:00. 

 

Figure 24: January weekday with demand response 

R: Flexibility tables 

The DSO examines all scenarios in the way described above with the Annual software module and 

lists the flexibility requirement(s) and time slot(s) for all cases when the defined limit is violated. 
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requests during the contract period is sent to the Grid Side EMS database to make a long-term 

contract proposal for the flexible prosumer (this is the part of the Multiannual module operation 

already). 

Table 8 – DSO flexibility requirements 

Month Type of day 

DSO 

flexibility 

requirement 

[kW] 

Time 

interval 

Time 

interval 

Pcs of 

type of 

day 

1…12 

workday / 

Saturday / 

Sunday 

direction, 

volume 
start length 

 

2018-01 WEEKDAYS -150 07:15 2.50 22 

2018-01 WEEKDAYS -80 13:30 3.75 22 

      

4. Annual software module 

DSO has to deliver the above-mentioned flexibility table which informs about the needed flexibility 

for the specific network part. The basis of the calculation, i.e. the input is the result of the Load Flow 

calculation for each month, for each selected, specific type of day (weekdays, Saturday, Sunday). This 

means 36 scenarios with 96 lines, since the calculation is made in quarter-hourly resolution.  

The LT module excel file consists of Annual and Multiannual parts.  The Annual part can be split into 

so called sub modules: 

1. Calendar submodule 

2. Calculation input submodule 

3. Flexibility calculation submodule 

4. DSO flexibility table (Output) 

The interrelationship of these modules is described below: 

 

 

Calendar 

The Calendar sheet 

contains the type of days in 

each month of the given 

year which is used in DSO 

Flexibility table in Output. 

The holidays have to be 

handled manually. 

Calculation input 

The Calculation 

input_Scenarios contains 

the essence, the result of 

network examination, this is 

a time series of network 

load assigned to months 

and types of days. 

The network limits can be 

edited here. 

The Calculation starts the 

calculation of the needed 

flexibility. Beside of this – 

for sake of testing - the user 

can choose given month-

type of day setting and 

display the calculation on 

the Flexibility calculation 

page, in this way the tester 

can check the calculation of 

Flexibility calculation 

This is the core of the 

module, here the software 

compares the operational 

limits of the network with 

the load curves served by 

scenarios, and results in 

flexibility needs in kW and 

corresponding time 

intervals. 
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Calendar 

The below screen shot contains the Date sheet which is an assistant table. Here the user defines the 

type of day for the given date, and the special days (national holidays, Christmas, etc.) has to be 

handled. This table also counts the type of days within each month which is used in DSO Flexibility 

table in Output.  

DSO flexibility table (Output) 

The result of the flexibility calculation is the DSO Flexibility table, which contains line by line the needed 

flexibility in kW and time interval for specific month and type-of-days. Beside of the „raw“ flexibility 
data the table contains the number of the specific type of days per month which later can help in the 

Multiannual module to count all the requested flexibility in kWh in the year and it will be used for unit 

price calculation of the Activation part of the request.  
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Figure 25: Calendar 

Column E: type of the special days in the appropriate format, e.g. "01-WEEKDAYS", e.g if 01.01 is new 

year it means SUNDAY because of the load pattern, but (in some case in HU there are some 

Saturdays when employees have to work instead of another day, therefore it will be WEEKDAYS from 

load pattern point of view: e.g 08.20 is a public holiday, Tuesday-> match SUNDAY to it, 08.19 is 

Monday but based on Governmental decision it is nor workday, the employees have to work on 

08.10 Staurday instead of 08.19 Monday, therefore 08.10 will be WEEKDAYS, the 08.19 will be 

SATURDAY. The matching depends on the National holiday plan. 

Calculation input 

At the beginning of calculation user can set the operational limit of the network. The Limit table is 

used to record the load limits (operational limits) of the concerned network part (either LV, MV or 

MV/LV Tr.). The possibility of selection among different limits month by month helps the testing of 

the system. If we used only one limit for whole year then perhaps the flexibility service would be 

necessary only in January and December, but in this way, we can test the operation of the system in 

any time. 
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Figure 26: Limits 

The below picture of shows the Scenarios which contain the DSO load flow calculation or SCADA 

measurement. What is important is that the granularity of time series is 15 minutes, the cells contain 

kW, and the columns serve to distinguish the specific months, type of days from each other. For each 

month, for each type of day there are time series of network load results, in this case 36 scenarios 

were calculated but it varies DSO by DSO, if there is no possibility to gather the information in this 

way then it is also acceptable if e.g. there will be winter-summer seasonal differentiation and there 

will be weekday-non-weekday differentiation. 

 

Figure 27: Scenarios 
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As it was already mentioned the basis is the 36 scenarios - of course it depends on the DSO policy, 

practice how many scenarios will be calculated - but beside of the scenarios the module user has to 

give as an input the operational limits of the network. (A thermal limit of the network part can be 

recorded for the user’s own information.) 

After that the user has to run the calculation. Based on the background calculation the output table 

is being filled in, which will be the so-called Flexibility table for the specific network part. 

 

Figure 28: Calculation command 

Flexibility calculation 

The calculation part of the module can be checked on the Flexibility calculation sheet: 
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Figure 29: Flexibility calculation 

The calculation compares the operational limit with the scenarios (Load flow calculation results) and 

determines the intersection of the load curve and the operational limit. After that the module seeks 

the local maximum(s) of the curve and determines the needed flexibility which is the local maximum 

of the curve. Based on this calculation the module fills in the output table which is the concrete 

Flexibility table, see below: 

DSO Flexibility table (Output) 

The output contains the number of specific type of days within the specific month (Pcs of type of 

days), which is calculated on the Calendar sheet. 
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Figure 30: Output table 

Attention: the negative sign refers to the downward flexibility, i.e. the DSO needs a load reduction. If 

the sign would be positive then it would mean an upward flexibility, i.e DSO would need a load 

increase (e.g due to voltage increase because of renewables). In our case we will use only the 

negative sign, and the calculation is prepared for load reduction. Later on during the unit price 

calculation we use absolute value function to avoid negative prices. 

The Flexibility table will give the numerical description of the below picture, attention, the below 

picture is only a visual example/aid, the numbers do not fit to above tables: 
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Figure 31: Visualized flexibility calculation 

That is, it gives the needed flexibility for the network with the needed time interval. Furthermore, it 

calculates the flexibility service in kWh as well, because the Flexibility table will be the input for the 

Multiannual software module, where we have to use the kWh dimension as well for the unit price 

calculation. 

The programmed SW module of LT module can be found below as embedded file: 

3Smart_LT 

module_v4.xlsm
 

Description of Visual Basic Macros (VBM) used in Annual SW module 

This part of the document presents the VBA macro logic of the flexibility calculation in 

LT_module.xlsm’. 

The user can run the calculation in the sheet ’Calculation input’ by clicking on button ’Calculate’. The 

input data should be given in the sheet ’Calculation input’. Only the blue marked cells can be edited, 

otherwise the macro will not run correctly. 

The following input should be checked in any case before calculation: 

 The scenario values: If possible, it is recommended to fill each column with data. 

Otherwise, blank columns will not be processed into the output table. 

 The thermal limit have to be given in the yellow cell in ’Calculation input’. 

 The operational limit has to be given for each month! If any cell is left blank, the 

calculation will return with some hashtag values. 

 

Thermal limit of the 

line (4th column) 

Operational limit of 

the line (3rd column) 

2nd local 

Maximum value of 

the load curve 

The section of the 

load curve where 

load exceeds the 

operational limit 

(2nd column) 

Estimated load 

curve (1st column) The section of the load 

curve where load exceeds 

the operational limit 

(2nd column) 

Required flexibility at 

17:15, 87kW-70kW=17kW 

(7th column) 

Required flexibility at 18:00 

(local maximum), 93kW-

70kW=23kW 

(6th column) 
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After calculation, the distinct month-daytype values can be checked. There is a combobox in cell 

’A21’ in ’Calculation input’. After clicking the button below, the calculation will be shown for the 

chosen daytype in ’Flexibility calculation’. 

The control buttons in this Excel are linked with VBA scripts running in the background. The monthly 

operational limits are stored in a 12-element array. The month, daytype, local maxima values, time 

interval start and time interval end values are stored in separate 200-element arrays. For these 

procedures, various indexes used while counting and looping. At the end, the output rows are 

generated from the array values (defined as maximum 200). The 200 value limits the rows of 

flexibility table, i.e. maximum 200 raws can be editied in flexibility table (in this way more local 

maximums of daily load curve  can be handled. 

 

Figure 32: VBA script 

If the flexibility requirement of a daytype is not greater than 0, then it is filtered out from the result 

table. 

There are 2 VBA macro script modules. One for the overall calculation, and another for checking the 

calculated values for a selected daytype. 

The sub procedures of the calculating VBA macro script are the following: 

- Szamolas_Click: The main sub which runs at first by clicking on the ’Calculate’ button. 

Writes the operational limits into an array, and calls Calculate procedure 

- Calculate: Goes through each input column, and each cell within those, copies the load 

values into the calculating sheet. Uses monthly index by calling ValidateMonth. Calls the 

TimeIntervalsIntoArray and LocalMaximaIntoArray procedures per column. At the end, 

writes the array values into the output rows. 
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- TimeIntervalsIntoArray: Saves the time interval start and end per daytype to separate 

arrays, then uses 3 hidden helper columns to choose local maxima per daytype. 

- LocalMaximaIntoArray: Saves the chosen local maxima values into an array. 

- ValidateMonth: Assigns an index value to each month for calculation and looping. 

The sub procedure of the checking VBA macro script is the following: 

- Gomb8_Click: Runs by clicking on the ’Show calculation’ button. Checks the combobox 

value, then writes the related values to the sheet ’Flexibility calculation’. 
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Flow chart for Annual software module 

 

It can be deduced from the above flow chart where a Database interaction is necessary. 

Start of Annual module 

operation

Time series of Parameters 

alongside the network

Calculation of flexibility needs by 

DSO:

- Flexibility calculation

Generation of DSO Flexibility 

table (with number of type of 

days in given month)

Generation of scenarios for 

different months, type of days

Scenario table 

with loads:

- Calculation 

input

Dates of 

Calendar:

- Calendar

Calcualtion Input:

Limit selection

Scenarios in Month-Type 

of Day structure

Claculated flexibility for 

months, type of days 

with power and time 

interval

DSO Flexibility 

table:

- DSO Flexibility 

table (Output)

Write into 3Smart 

Database:

- DSO Flexibility table into 

LT Database
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Executive summary 

One of the objectives of the project Smart Building – Smart Grid – Smart City (3Smart) is creation 

of an integrated and modular energy management tool for the DSO to use buildings as their assets 

and to utilize their flexibility in order to efficiently plan investment into the distribution grid. The tool 

is organized in two main submodules, Long-term and Short-term module. The Long-term module is 

used by the DSO for offline planning and it allows the DSO to plan their investments based on 

reserving building flexibility services by substituting CAPEX with higher OPEX paid to the building for 

providing services. Long-term Annual module calculates the DSO needed flexibility and Multi-Annual 

module calculates the flexibility service fees (activation, reservation and penalty prices). On the other 

hand, short-term module is used by the DSO to optimize usage of flexibility services and schedule. 

Day-ahead module is used for determining time windows for utilizing daily flexibility coming from 

reservation windows in the long-term contract and the intra-day module is used for improving daily 

schedule.  

The focus of deliverable 5.4.3 is on energy management tools interfaces. Deliverable 5.4.3. has 4 

outputs, one for each submodule. The deliverable explains every variable that is used as submodule 

inputs and describes the final output of the modules. Database outlook is described in Annex 1 while 

submodules algorithms and logic are provided in Annex 2. This document presents Long-term 

Multiannual module interface tables. 
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1 Introduction 

An important part of the deliverable is the description of the long-term module functionalities from 

the DSO point of view, as well as that of a distributed demand response provider, in the market 

environment. Currently, neither the DSO or demand response providers participate in the market. 

The market, in this deliverable, is seen through participation of multiple stakeholders exchanging 

money and services in a transparent way either through tenders or, more preferably, at power 

exchange. This means that the DSO does not have any information of the accepted demand profiles 

from its users and operates the network based on vast experience and available historical data. On 

the other hand, not enabling market access to the distributed energy sources results in overbuilding 

and underutilization of the DSO assets. 

Integrated tool for Long term energy management of DSO, installed with the 3Smart project, is 

divided in two modules: Annual and Multiannual. Both modules are run on a yearly basis. The 

Multiannual module is divided into the next submodules: 

1. Price and penalty 

2. Flexibility unit prices, penalty 

3. Building Flexibility table  

4. Output for long term contract 

Each part of the module consists of three parts: i) input for specific calculation function, ii) the 

calculation function itself and iii) the output of the specific calculation function.  

The modules are designed, commissioned and tested on different pilot location.  

In this deliverable the focus is put on Multiannual module, its logic, algorithm and variables. 

Each submodule is presented via an interfacing table that explains what data is used by the 

submodule as inputs and what is the final output data. The algorithms behind the module are 

explained in more details in the annexed document. 

1.1. Long term Multiannual (MA) module interface tables 

An important feature of the MA LT module is that all inputs and outputs of the module are directly 

written from/in database of other modules (e.g. Annual, DA). In case of the Multiannual module 

there is only one table which does not appear as database table in other modules, namely Price and 

penalty, while other excel tables appear in other module databases either as input (Building 

Flexibility table, Flexibility unit prices, penalty) or as output (Output for long term contract). In that 

sense, the following Input/output table describes not only the database entities but the LT excel 

inputs as well. 

Table 1. Long-term Multiannual input interface table 

Variable name Variable annotation Variable description Source 

Price and penalty 

sheet 
Price and penalty 

The calculator sheet 

needs the following 

inputs by DSO Staff: 

WACC, Inflation, The cost 

DSO decides on 

input data for 

Price and penalty 
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of investment, Ratio of 

used flexibility price, Year 

(considered life time). 

Reservation ratio, Penalty 

price multiplicator, 

Quality threshold (max. 

deviation in size of 

service without penalty). 

The main results: 

Reservation part of 

Flexibility unit price, 

Activation part of 

Flexibility unit price, 

Penalty which are used 

other input table, 

namely: Flexibility unit 

prices, penalty. 

Flexibility unit 

prices, penalty 

sheet 

flexibility_unit_prices_and

_penalty 

Contains of: Contract 

valid from, Contract valid 

until, Reservation part of 

Flexibility unit price, 

Activation part of 

Flexibility unit price, 

Penalty price (per kWh 

non-delivered below the 

threshold), Deviation in 

size of service (Quality 

threshold): Max. These 

values serve as an input 

for the Building Microgrid 

module, beside of DSO 

Flexibility table which is 

part of Annual module. 

Price and penalty 

sheet 

Building Flexibility 

table sheet 
building_flexibility_table 

This table contains the 

provided (planned) 

flexibility by Building for 

the given contractual 

period which is a crucial 

input for DSO for creation 

of Long-term contract (in 

database: contract) 

Building 

Microgrid module 

 

Table 2. Long-term Multiannual output interface table 

Variable name Variable annotation Variable description 

Output for long term 

contract 
contract 

The following are either the 

results of the contract table or 

manual entries (me) by DSO 

Staff (after completion, the LT 

workflow send it to Building for 

acceptance): Contract valid 
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from, Contract valid until, Est. 

no. of activations during period, 

Maximum Size of service in 

power (kW), Max. duration of 

service per activation (h), On – 

Trigger (me), Off – Trigger (me), 

Maximum allowed activation 

time (me), Quality of Service 

(me), Unit price of Reservation 

(EUR/kW/(15min)), Unit price of 

Activation (EUR/kWh), 

Reservation fee for the 

contractual period, Activation 

fee for the whole contractual 

period, Average activation 

price/activation, Pricing  , 

Penalty if failed supply (only 

termination criteria has to be 

manual entry), Building offer 

accepted (manual entry by 

Building) 
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Conclusion 

Web based workflow tool is developed for both the Annual and Multiannual modules. The central 

point of LT workflow is an excel (“3Smart_LT module_v4.xlsm”) which requires manual inputs from 

DSO staff. DSO staff has to be aware of these manual interventions, nevertheless the LT workflow 

gives a logical guide for it. 

The interconnection of the long-term and short-term modules of the grid-side EMS is crucial for 

running daily load flow calculations. The daily AC load flow calculation will use the distribution 

network and load parameters from the standardized database/ or table prepared by the DSO and the 

basic logic is similar to the long-term scenario-based calculations. This AC OPF (optimal power flow) 

module completes the optimization calculation described in the short-term module description. An 

important output of the LT module is the DSO and Building flexibility table which is a key input to the 

AC OPF to precisely calculate the needed flexibility utilization from offered amount and time interval. 

Furthermore, another key interconnection is between Long Term module and Building side Microgrid 

module: based on DSO Flexibility table results (submodule) the Microgrid will answer with a so-called 

Building Flexibility table which contains the capability of the Building to provide requested flexibility 

service. 

Important changes appearing in D5.4.3 when compared to module described in 5.3.1 Open software 

module for long-term level of grid-side energy management- Multiannual module description: 

 the former version of the module contained a more fragmented LT excel. Although the 

following submodules were created, they have been slightly changed/adjusted 

o Inputs for flexibility cost,  

o Calc. of available resource,  

o Output of flexibility cost,  

o Input for unit price calc._1,  

o Unit price calculation,  

o Input for longtermcontract_1  

The above submodules are now organized into one submodule: Price and penalty. This 

submodule contains all relevant information and makes the usage of submodule easier.  

The Input for unit price calc._2 table served as an input for unit price calculation, but in the 

unified LT excel it is part of the DSO Flexibility table. 

 Output of unit price calc., Input for longtermcontract_1 are organized into one submodule, 

into Flexibility unit prices, penalty.  

 Input for longtermcontract_2 table is renamed to Building Flexibility table. 

 Long term contr. preparation table was merged into Output for long term contract table. 

 Beside of the restructuring of LT excel, the Reservation unit price calculation was replaced by 

a new, more logical calculation which is described in Annex. The numerical example also 

followed this change and is shown in Annex. 
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Annex I 

1. Database architecture 

The structure is envisioned in a way that the output tables of one entities database are defined in the 

same way as the input tables of another entities database, which makes understanding of the 

database structure a crucial part of the development process. The Long Term database is not 

separated into two databases (Annual and Multi Annual); the building_flexibility_table and 

flexibility_unit_prices_and_penalty belong to Multiannual, the other part of database belong to 

Annual part.  

 

Figure 1 – Long-term database tables and relations 
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2. Communication events between the modules related to long-

term grid-side operation 

The below table describes the communication mechanism of the LT workflow which contains steps 

regarding both Annual and Multiannual modules. The main characteristic of the description is to 

focus on Grid-Building interaction and related database manipulations. 

Table 3. Chronological communication events with detailed exchange structure 

ID 
Time 

(UTC) 
Data exchange/ activity 

D.5.3.1 (Annual and 

Multiannual) 

Nomenclature 
module 

Reads 

data 

 Puts 

data at 

disposa

l 

Tri-gger 

1 

till 

December, 

before 

contract 

agreement 

Calculation of flexibility needs, 

prices, penalty and quality of 

service by using “ 3Smart_LT 

module_v3.xlsm” 

Result: DSO Flexibility 

table; Flexibility unit 

prices,penalty; Output 

for long term contract 

sheets 

LT 

module 

DSO 

(staff) 

DSO 

(staff) 
0 

2 

till 

December, 

before 

contract 

agreement 

Importing results of  “ 3Smart_LT 

module_v3.xlsm” 

Result: DSO Flexibility 

table; Flexibility unit 

prices,penalty; Output 

for long term contract 

data base tables 

LT 

module 

DSO 

(LT)(script

1) 

DSO 

(staff) 
0 

3 After step 2 
Building EMS Microgrid module is 

fetching data from LT database 
 

Microgri

d 
Building 

DSO 

(LT) 
0 

4 After step 3 Building calculate flexibility offer 

Result: Building 

Flexibility database 

table, (Microgrid 

database) 

Microgri

d 
 Building 0 

5 After step 4 
 DSO (LT) module is fetching data 

from Microgrid database 
 LT 

DSO (LT) 

(script2) 
Building 0 

6 After step 5 
Generating file from Building 

Flexibility table 

Result: Building 

Flexibility table in Excel 
LT 

DSO 

(staff) 

DSO 

(LT) 

(script3

) 

0 

7 After step 6 

Contract preparation by DSO, 

inserting Building Flexibility table 

into “ 3Smart_LT module_v3.xlsm” 

Result: Output for long 

term contract sheet 
LT  

DSO 

(staff) 
 

8 After step 7 
Acceptance/Rejection of Building 

offer 

Result: Offer 

acceptance sheet 

(Yes/No) 

LT  
DSO 

(staff) 
 

9 After step 8 

Importing Output for long term 

contract sheet of  “ 3Smart_LT 

module_v3.xlsm” 

Result: The details of 

contract in Database 
LT Building 

DSO 

(LT) 

(script4

) 
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Annex II 

Logic of Open software module for long-term level of grid-side 

energy management - Multiannual module  

1. Multiannual load forecasting: Method of load forecasting 

1.1 The used method of load forecasting 

Beside the annual planning, where the details are considered, the DSO derives the needed 

equipment upgrade from the multiannual load forecasting. Based on the load forecasting the DSO 

can run load flow calculation and can decide whether and what kind of technical intervention should 

be elaborated (e.g. increase of the cross section of the line, or introducing some voltage deviation 

mitigation technology, etc.). 

Long-term load forecast is based on time series forecasting. Series of past measurements are 

available for trend analysis. The estimation is then modified based on the correlation between 

economic development and the change in electricity demand. The change in electric loads shows 

determinate correspondence with the development of the economy and its qualitative and 

quantitative changes. Long-term load estimation represents an output of the estimates forecasting 

the state of the economy.  

Exceptional events (e.g., new HV/MV station, large consumer or distributed generation unit) and the 

effect of photovoltaic generation on the summer daytime peak are taken into consideration during 

the process. The load estimation is revised annually. 

The span of long-term load estimation is 10 years at most and is needed for determining 

development of the main distribution network. The Transmission System Operator regularly prepares 

the national long-term forecast for electricity usage and consumer peak load. E.ON needs regional 

data for its area of operation as this differs from the national average, also different regions of the 

operating area show significant difference from each other. To lay the regional foundation for 

development of the main distribution network, the difference in characteristics of each region from 

the national average needs to be considered. 

1.2 Load forecast for Debrecen HV/MV and given MV line 

The method described for main distribution networks can be extended to medium voltage 

distribution backbones. 

Load estimation for branch lines of distribution networks, big city medium voltage distribution 

networks, and low voltage networks would require a finer resolution of load distribution data within 

a region, which can only be determined with a great degree of inaccuracy. The appearance of 

concrete power demands following the values defined in the regional estimate only in average is to 

be expected. The concrete, local appearance of a part of these demands cannot be defined with the 
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required accuracy even for a short term. Demands “not covered” should be taken into account when 

planning investment resources, but exactly how and at which network parts these have to be 

considered can only be determined once the specific demand has arisen. The concrete technical 

tasks and investments should be chosen and worked out with consideration for the technical-

economic principles. A quick reacting planning and investment organization is required to achieve 

this. 

The optimistic (high) load prognosis for the supply area of Debrecen Délkeleti 132/22 kV substation is 

2.27% and the low prognosis is 2.07%. 

 

Figure 2 – The diagram of the low load forecast for the HV/MV substation 

2. Method for preparing and applying long-term contract in 

simulations 

Here we describe the preliminary steps that are needed for a long-term contract, namely, the 

technical and economic parameters that need to be considered. These parameters include frequency 

of activation, activation time, avoided cost, the method of deriving the flexibility price from avoided 

cost. The chapter contains long-term contractual framework for the DSOs. The steps of price 

calculation will be detailed in chapter 5 with an example.  

2.1 Considered factors 

Derivation of the price calculation 

The needed flexibility price should be derived from such investment alternative that are necessary 

when the DSO wants to mitigate the possibility of supply quality insufficiency (e.g. voltage 

fluctuation, deviation) or avoid physical deterioration of its equipment (due to overloading). Here we 

consider the case of overloading.  
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The needed amount of flexibility can be determined from the scenarios. The DSO should carefully 

examine the circumstances. Based on the load flow results and in accordance with its technology 

policy, the DSO can estimate how many times and for how long the set limit would be exceeded and 

should decide whether the equipment would be jeopardized or not. (For example, if the load of a line 

or a transformer exceeded the operational limit for longer than X hours more than Y times a year, 

then an upgrade would be necessary. However, in some instances the limit is exceeded only for a 

short time once or twice a year.)  

The price will be derived from the alternative DSO equipment upgrade investment cost, in our case 

the MV line upgrade. We should determine the total price of the flexibility for a given period, for the 

time the contract is valid between the building and the DSO. Next, the whole price of the flexibility 

has to be divided in two and the ratio between the sum of reservation fees and the sum of activation 

fees has to be determined.   

Frequency of activation, time of activation, size of services, penalty 

The frequency of activations, the time interval of each activation and the needed size of flexibility for 

each time interval can be derived from the load flow calculations for each scenario. The results will 

change yearly due to the load increase (or decrease), therefore the DSO should run the scenarios 

with appropriate load forecast yearly. If the load flow calculation based on load forecast shows that 

in the next year the load will exceed the operational limit several times, the DSO will decide whether 

a line upgrade is necessary or not. If necessary, the maximum amount of the needed flexibility will be 

determined.  

After that, the DSO decides about the ratio of the reservation fee to the activation fee. When this 

background is determined, the number of necessary activations and the needed flexibility amount 

for each activation has to be determined. The time interval of activations will be calculated from the 

long-term LFs. When we have the needed flexibility per activation, the activation frequencies and 

durations, the ratio between reservation and activation, then the DSO will be able to calculate the 

basic parameters of the long-term contract for a given customer: the reservation fee (unit price of 

reservation*available flexibility in kW) and the activation price, which is described below. Of course, 

prior to “signing” the contract, the customer has to report its available flexibility. Nevertheless the 

unit prices will not be affected by the report. Based on above parameters the DSO can calculate the 

reservation fee (unit price of reservation*available flexibility in kW) and the activation price, which is 

described below. 

(Indicative) activation price calculation 

If we already have the ratio between the reservation and activation, then we can calculate the 

activation price per kWh as well if we know the needed flexibility per activation and the number of 

activations. The activation price calculation will be based on the following equation:  

sum cost of activation part of flexibility for the whole line (whole cost - reservation cost) in EUR / 

sum of needed flexibility in kWh, 

The dimension will be EUR/kWh/activation. The sum of needed flexibility is based on the flexibility 

table which informs the building of the needed flexibility size and duration for each typical day in 
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each month (the maximum needed kW*duration will give the needed flexibility in kWh, it is needed 

to sum up all activations within the year), 

The building can calculate the possible revenue based on its flexibility service in the following way: 

E -- overall kWh of flexibility which grid needs in the period for which contract is made(whatever the 

period is);  

N – overall number of 15-minute time intervals of flexibility in the contracting period;  

Y – money in EUR which the grid invests into flexibility in the contracting period;  

0<a<1 – part for activation;  

0<r=1-a<1 – part for reservation 

------------------------------------------------------------------------ 

Price of activation (EUR/kWh): a * Y / E 

Needed overall average power for flexibility (kW): P = E / (0.25 h * N) 

Price for reservation in one 15-minute time period (EUR/(kW in one 15-minute period)): (r * Y / P) / N 

Reservation revenue= Price for reservation in one 15-minute time period (EUR/kW)* sum of provided 

flexibility by Building (N) 

Activation revenue= activation price in EUR/kWh* provided amount of flexibility in the year in kWh 

Table 1 does not inform about the accurate service provision of the building; the Building flexibility 

table should be attached to the contract because it describes the used service in the contractual 

period in a more accurate way. 

2.2 Contractual framework 

The basis of the long-term contract will be the table below: 

Table 4- Contract framework 

Service name  Flexibility service 

1)  Contract valid from  dd.mm.yyyy. 

2)  Contract valid until  dd.mm.yyyy.  

3)  
Est. no. of activations 

during period  

The estimated number of activations in the Contract period  

4)  
Size of service in power 

(kW)  

This is the maximum value of flexibility in kW in the 

contractual period  
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5)  
Max. duration of service 

per activation (h)  

e.g. 3 hours  

6)  On - Trigger  Signal from the DSO or according to DA AC OPF calculator 

7)  Off - Trigger  

Maximum: see "Max.duration of service per 

activation"   from “on”-signal, or by earlier signal from the 

DSO 

8)  
Maximum allowed 

activation time  

15 min (but it depends of the capability of the Customer 

process technology) 

9)  Quality of Service  

- Deviation in max. duration: +/- 15 min. 

- Deviation from, On - Trigger: +/- 15 min. 

- Deviation in size of service: Max. +/- 10% deviation 

- Acceptable no. of unsuccessful activations: x 

10) 
Unit price of Reservation 

(EUR/kW) 

Based on flexibility table of DSO, the unit price is derived 

from the provided flexibility in kWh and sum of provided 

flexibility by Building (N) 

11) 
Unit price of Activation 

(EUR/kWh) 

Based on flexibility table of DSO, the unit price is derived 

from the needed flexibility in kWh (this is the activation part 

of the service) 

12) 
Reservation fee for the 

contractual period 

The whole amount of the reservation fee for the contractual 

period 

13) 
Activation fee for the 

whole contractual period 

The whole amount of the activation fee for the contractual 

period 

14) 
Average activation 

price/activation 

Price of one activation: Since during the whole contractual 

periode the duration and size of activation varies day by day, 

the entire Activation fee ("Activation fee for the whole 

contractual period") will be diveded by the number of 

activations from "Est. no. of activations during period " 

15) Pricing   
Reservation fee for the whole contractual periode (in EUR)+ 

number of activation*Average activation price (inEUR)=EUR 

16) Penalty if failed supply  

Calculation of penalty in case of  failed delivery of one 

activation(zero activation): This is the multiplication of the 

activation fee, in this case we used 2 multiplicator. 

- Y times of failed delivery → termination of the contract 

17) Building offer accepted 
The value can be No/Yes which is coming from LT workflow 

and reflects to the acceptance of DSO. 
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3. Suggested method for setting price incentives in simulations 

In this chapter, we identify the financial elements that need to be considered when reservation, 

activation and penalty are priced. To be able to calculate the competitiveness of a flexibility with the 

avoided investment which should be needed to prevent the line from overloading next year (or 

exceeding the operational limit), we will use the approach of future value (FV) or in more general, 

the basics of net present value (NPV) calculation. 

3.1 Net Present Value (NPV) and inflation 

Net present value (NPV) is the difference between the present value of cash inflows and the present 

value of cash outflows over a period. It determines future net cash flows of an investment, 

discounting those cash flows using a discount rate reflecting the risk level of the project and then 

subtracting the net initial outlay from the present value of the net cash flows. It helps in identifying 

whether a project adds value or not. 

Inflation is a phenomenon that results in a decrease in purchasing power and an increase in revenue 

and costs. It affects estimates of future cash flows. In order to make better decision, accurate capital 

budgeting calculations are important, which are possible only when all the financial variables are 

taken care of. 

There are two ways of how inflation can be accounted for while calculating net present value. The 

final net present value it is same under both methods. 

1. Nominal method: converting real cash flows to nominal cash flows and discounting them 

using nominal discount rate. 

2. Real method: estimating real cash flows and discounting them using real discount rate. 

Under the nominal method, net cash flows in time t are calculated by the following formula: 

Nominal Cash Flows at Time t = Real Cash Flows at Time t × (1 + Inflation Rate)
t
 

Under the real method, real cash flows and real discount rate are used. Relationship between 

nominal discount rate, real discount rate and inflation is given below: 

Nominal Discount Rate = (1 + Real Discount Rate) × (1 + Inflation Rate) – 1 

≈ Real Discount Rate + Inflation Rate 

Example 1: Inflation adjustment using nominal cash flows 

A company is considering a project that is expected to generate $10 million at the end of each year 

for 5 years. The initial outlay required is $25 million. A nominal discount rate of 9.2% is appropriate 

for the risk level. Inflation is 5%. 

Nominal cash flows are calculated for each year as follows: 

- Year 1 = $10 million × (1 + 5%)
1
 = $10.5 million 

- Year 2 = $10 million × (1 + 5%)
2
 = $11.0 million 

- Year 3 = $10 million × (1 + 5%)
3
 = $11.58 million 
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- Year 4 = $10 million × (1 + 5%)
4
 = $12.16 million 

- Year 5 = $10 million × (1 + 5%)
5
 = $12.76 million 

These nominal cash flows are to be discounted using nominal discount rate, which is 9.2% 

Table 5 – Inflation adjustment using nominal cash flows 

Year 1 2 3 4 5 Total 

Nominal cash flows 10.50 11.03 11.58 12.16 12.76  

PV discount rate at 9.2% nominal 0.916 0.839 0.768 0.703 0.644  

PV of cash flows 9.62 9.25 8.89 8.55 8.22 44.52 

Net present value = $44.52 million – $25 million = $19.52 million 

Example 2: Inflation adjustment using real cash flows and real discount rate 

The relationship between nominal discount rate, real discount rate and inflation can be rearranged 

as follows: 

Real discount rate = (1 + nominal discount rate) ÷ (1 + inflation rate) – 1 

≈ nominal discount rate – inflation rate = (1 + 9.2%) ÷ (1 + 5%) – 1 = 4% 

Table 6 – Inflation adjustment using real cash flows and real discount rate 

Year 1 2 3 4 5 Total 

Real cash flows 10.00 10.00 10.00 10.00 10.00  

PV discount rate at 4% real 0.962 0.925 0.889 0.855 0.822  

PV of cash flows 9.62 9.25 8.89 8.55 8.22 44.52 

Net present value = $44.52 million – $25 million = $19.52 million 

3.2 Calculation of the total price 

In our case we calculate a real investment deferral value, i.e. a monetary benefit if we defer the 

investment (it is just like putting the money in the bank). 

The maximum price on flexibility products for the DSOs will be set from the DSOs’ alternative costs in 

reinforcement. This will form a sort of price-cap on flexibility products for the DSO. The final price will 

depend on what price the Aggregator offers its flexibility products at. If it is sufficiently low, the DSOs 

are likely to use the offered flexibility product.  

If the DSO’s only alternative to buying this flexibility product is to upgrade its grid components 

(cables, transformers, etc.), the price setting could be done based on the 1st year value of these 

upgrades.  

For example, if the upgrade of a 10 kV feeder costs 65.000 EUR/km, the life expectancy of this 

upgrade is 40 years, the inflation is 2,5 % and an interest rate (in our case the recognized WACC by 

the regulator) of 4,69% is considered, the value of the grid upgrade deferral will be the following, of 

which some will be spent on the necessary flexibility product un-locking the possibility of the 

deferral. 
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Table 7 – Considered variables 

WACC 4.69% 

Inflation 2.5% 

Useful lifetime 40 years 

Cost of 1 km 10 kV cable upgrade 65,000 EUR 

Cable length 3 km 

Real interest rate 
1 +WACC1 + Inflation − 1 = 3.65% 

 

Table 8 – Calculation of maximum price 

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

WACC 4,7% 4,7% 4,7% 4,7% 4,7% 4,7% 4,7% 4,7% 4,7% 4,7% 4,7%

Inflation 2,5% 2,5% 2,5% 2,5% 2,5% 2,5% 2,5% 2,5% 2,5% 2,5% 2,5%

FV (Future Value) 195 000 199 875 204 872 209 994 215 244 220 625 226 140 231 794 237 589 243 528 249 616

Cost of Investment (with consideration of inflation) 195 000 199 875 204 872 209 994 215 244 220 625 226 140 231 794 237 589 243 528 249 616

Minimum amount of money available to cover the 

future investment 190 921 195 694 200 586 205 601 210 741 216 009 221 410 226 945 232 618 238 434 244 395

Maximum price of flexibility 4 079 4 181 4 286 4 393 4 503 4 615 4 731 4 849 4 970 5 094 5 222

Ratio of used flexibility price 100%

Used price of flexibility (maximum*ratio) 4 079 4 181 4 286 4 393 4 503 4 615 4 731 4 849 4 970 5 094 5 222

Free amount of money after flexibility price 190 921 195 694 200 586 205 601 210 741 216 009 221 410 226 945 232 618 238 434 244 395

 

 

The logic of the calculation is depicted in Figure 3: 

 

Figure 3 – Logic of the price calculation 

1st step → Cost of Investment (with consideration of inflation) (CoI): 

This value represents the needed amount of money for the investment that we would like to avoid. It 

is important to mention that the valorization is necessary for each year, since in the next year we 

have to spend more money on the investment because of the inflation. 

2nd step → Minimum amount of money available to cover the future investment (MAM): 

1st step → Cost of Investment (with 

consideration of inflation) (CoI)

2nd step → Minimum amount of 

money available to cover the future 

investment

3rd step → Maximum price of flexibility (MPF)

6th step → Future Value of the

Money (FVM)

5th step → Free amount of money 

after flexibility price (FAM)
4th step → Used price of flexibility 

(maximum*ratio) (UPF)

2018 2019 2020

WACC 4,7% 4,7% 4,7%

Inflation 2,5% 2,5% 2,5%

FV (Future Value) 195 000 199 875 204 872

Cost of Investment (with consideration of inflation) 195 000 199 875 204 872

Minimum amount of money available to cover the 

future investment 190 921 195 694 200 586

Maximum price of flexibility 4 079 4 181 4 286

Ratio of used flexibility price 100%

Used price of flexibility (maximum*ratio) 4 079 4 181 4 286

Free amount of money after flexibility price 190 921 195 694 200 586
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This value represents the amount of money which should be put into the bank to cover the next year 

investment cost. It results from a reverse calculation from the „Cost of Investment” (which is 

valorised in each year with the inflation). In the reverse calculation we use the WACC as a „bank 

interest rate” because of the energy industry. Nevertheless, WACC can differ industry by industry and 

country by country. MAM= next year CoI/1+WACC. 

3rd step → Maximum price of flexibility (MPF): 

It is calculated form the Future Value of the Money (FVM) and Minimum amount of money available 

to cover the future investment (MAM). MPF=FVM - MAM. The DSO can spend this amount of money 

for the flexibility. Only the first year should be considered, the subsequent years calculation can 

inform us only about what happens if we planned long-term and DSO would require the flexibility 

only e.g. in the 3rd year. Based on the time series calculation the DSO can consider what should be 

put into the medium-term plan. 

4th step → Used price of flexibility (maximum*ratio) (UPF): 

This flexibility price is derived from the Maximum price of Flexibility (MPF), if the DSO does not 

intend to use the whole amount of the MPF then it can use a ratio (%) by which this MPF will be 

multiplied, and only a given portion of the Maximum price of Flexibility will be used. If we set the 

Ratio of Used Flexibility price (RUF) e.g. 80%, then DSO will use only the 80% of the MPF. The 

remaining part of money will increase the Free amount of Money after flexibility price. In this way 

DSO will have more money which will increase the Future Value of the Money in the next year. 

5th step → Free amount of money after flexibility price (FAM): 

This amount of money in the first year is the difference of the Future value of the money (which 

equals Cost of investment in the first year) and Used price of flexibility. This money theoretically can 

be put into the Bank and is the basis of the next year Future Value of the Money. 

6th step → Future Value of the Money (FVM): 

This amount of money in the first year will be the Cost of Investment. In the subsequent years it will 

be calculated from the previous year Free amount of money after flexibility price (FAM)*(1+WACC), 

since this amount of money will be in DSO’s hand and it can be put in Bank theoretically. 

3.3 Reservation, activation and penalty fee 

Let us assume that maximum total price of the flexibility service is the calculated for first year value 

at 4.079 EUR. From the DSO’s point of view, it would make sense to consider the price calculation 

bases as kW, but from the Building optimisation point of view the most comfortable unit is the kWh 

(the optimisation uses this unit), therefore the DSO should set the flexibility price according to this 

request in case of activation, but in case of reservation the considered dimension is kW. In order to 

be able to give the most accurate calculation for the long term contract of the DSO, it should 

calculate the possible use cases of flexibility services based on load curve examination (calculation 

which is already described in the 5.3.1.1 Annual specification document). Here we give an example 

based on assumed DSO calculation which – in this case - consist of 36 scenarios. For each month the 

DSO will calculate typical daily load curves for weekdays, Saturday and Sunday. For the sake of 
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calculation simplicity, we consider a typical day and it will be multiplied by 365 days only for sake of 

example, nevertheless it is well known that workdays are less than 365 in a year. 

Table 9 – Flexibility requests 

02.jan workday 1 down, 150 07:15-09:45 

02.jan workday 1 down, 80 13:30-17:15 

 

Table 9 contains one day’s flexibility request. From network point of view, it is necessary to reduce 

the load by 150 kW for 2,5 hours in the morning, and by 80 kW for 3,75 hours in the afternoon. That 

means two activations per day. It has to be inverted into kWh.  

150 kW * 2.5 hours + 80 kW * 3.75 hours = 375 kWh + 300 kWh = 675 kWh/day. The whole amount 

of flexibility service is 675 kWh * 365 = 246 375 kWh (246,375MWh) for the network for the year.  

Of course, we have to consider that the flexibility service is split into two parts, Reservation and 

Activation part. The Building should know the constant part of the income which is derived from the 

Reservation part, and of course it will calculate the not constant part of the income, but it should be 

aware that it has some uncertainties (due to the fact that DSO will not surely activate the needed 

flexibility on the given day because the short-term calculation/measurement will calculate/measure 

more precise flexibility needs from network point of view).  

We assume a 50% ratio for the Reservation in terms whole available amount of free money, i.e. 50% 

of the 4.079 EUR = 2.039,5 EUR.  

The Reservation unit price is derived from the needed flexibility in kWh and converted into 

EUR/kWh/15 min, e.g. 2.039,5 EUR / 246.375 kWh/4 = 0,002069 EUR / kWh/15min. 

Activation unit price: 2.039,5 EUR / whole amount of activation in kWh in the year, e.g. 2.039,5 EUR / 

246.375 kWh = 0,008278 EUR / kWh 

Take an example with a Building which can provide only a fragment of the needed flexibility for the 

whole network. In order to be able to calculate the flexibility income of one building, it is necessary 

to have a Building schedule prior to the Long term contract. The schedule should be provided by the 

Building in the same structure as the flexibility table of DSO for ease of comparison.  

Table 7 – Building flexibility table 

Day 
Type of  

day 
Month 

DSO flexibility  

requirement [kW] 

 

Time 

Building 

available 

flexibility[kW] 

Time kWh 

02.jan workday 1 down, 150 07:15-09:45 down 15 07:15-

09:45 

37,5 

02.jan workday 1 down, 80 13:30-17:15 down 8 13:30-

17:15 

30 
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The DSO in this way could consider the available flexibility from the Building side. In this example, the 

Building can provide only one tenth of the needed flexibility (in kW), but the DSO should manage to 

gather more flexibility from other Buildings to satisfy the network constraints. 

Based on the above Building data, the flexibility income of the Building will be the following: 

Reservation:  0,002069EUR/kWh/15min*67,5kWh*365*4 = 203,95EUR 

Activation: at the beginning of the service period we assume that all planned activation will be called, 

i.e. two times per day with the given time period, 365*(37.5 kWh+30 kWh)*0,0083 EUR= 204,49 EUR.  

But the Building should be aware that there are uncertainties in terms of calling planned Activation, 

e.g DSO will call only 2 hours from the above mentioned 3,75 hours, and it can differ day by day (of 

course it is worth mentioning that in practice the calculated load curve for an MV line is well 

compared to the real load curve, either measured or calculated by DA AC OPF). 

What is really necessary to stipulate in the long term contract between DSO and Building is that 

Building should provide commitment not only in kWh and time interval, but in kW as well. Taking the 

above example, the Building could deliver the needed service in kWh during the 2,5 hours period 

with 7,5 kW in the first 1,25 hours and with 22,5 kW in the second 1,25 hours. This kind of service is 

not appropriate if it was not stipulated in the contract because it means uncertainties for the 

network management. So, if the building will give information only in kWh for the given period, the 

DSO will assume that this service will be delivered with a constant size of service in power, e.g. 37,5 

kWh for a 2,5 hours period will be considered with 15 kW, and the contract will contain it (e.g. as a 

flexibility table with the service provided by the Building in an appendix). 

The below example explains these restrictions in a visual way: 
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Figure 4 – Appropriate service 

 

 

 

Figure 5 – Inappropriate service 
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The penalty in case of flexibility service failure must be considered. The proposed penalty in case of 

not delivering the needed flexibility service equals the Multiplicator*Activation unite price (the 

Multiplicator can be chosen by DSO but of course if Building will not accept either it should be 

iterated or rejected the contract.  

4. Multiannual Software module 

Based on the above description and referring to 5.3.1.1 Annual software module specification, 

Multiannual software module description and the module itself can be found here. 

The module consists of three main parts: 

1. Price and penalty 

2. Flexibility unit prices, penalty 

3. Building Flexibility table  

4. Output for long term contract 

Each part of module consists of three parts: input for the specific calculation function, the calculation 

function itself and the output of the specific calculation function.  

 Price and penalty 

 

      

  

- WACC 

- Inflation 

- Ratio of used flexibility 

price (see explanation in 

chapter 5.2) 

- The cost of investment 

(this is the cost of 

investment if we could 

not use flexibility) 

Here the subpart of the 

module calculates the 

available amount of money 

for the flexibility service in 

terms of the specific 

network part (e.g if an MV 

cable line is concerned then 

its upgrade cost should be 

given as input). The logic of 

calculation was described in 

chapter 5.2. 

Here the subpart of the 

module gives the available 

money of the DSO for the 

flexibility service (both the 

maximum available and the 

used price, see explanation 

in chapter 5.2). It will be 

the basis of the further 

calculation of unit price of 

reservation and activation. 
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Price and penalty 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flexibility unit prices, penalty  

- Reservation ratio 

- Activation ratio 

- DSO Flexibility table 

from Annual module 

The ratio between 

reservation and activation 

depends on the DSO policy, 

here we set up a fifty-fifty 

ratio but it can be e.g 20-

80%. 

The DSO flexibility table 

gives information about the 

scenarios: of which month, 

of which specific day, how 

many timesflexibility is 

needed for how long. 

Beside of this there is 

calendar in the Annual 

module which helps to 

determine the type of days 

in accordance with the 

special dates of the year. It 

is crucial that the Building 

knows on which date of the 

year what kind of flexibility 

is needed. The building will 

answer for this request. 

- Used price of flexibility 

(maximum*ratio) 

- Unit price of flexibility 

for reservation 

- Unit price of flexibility 

for activation 

- Reservation part of 

Flexibility unit price 

- Activation part of 

Flexibility unit price 

This is the central point of 

the calculation, the already 

described Reservation and 

Activation unit price here 

will be calculated 

Here the subpart of the 

module gives Reservation 

part of Flexibility unit 

priceand Activation part of 

Flexibility unit price as an 

output which will be used 

by BEMS (Building side). 
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Building Flexibility table 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DSO Flexibility table from 

Annual module serves as 

an input. The Building gives 

an  answer to DSO for this 

flexibility need by this 

Building Flexibility Table 

which is one of the basis of 

the Long term cotract 
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Long term contract preparation 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here we have to mention that part of the 

Output for long term contract needs some 

editing activities, these activities were 

Module subpart: Input for 

long term contract_1 

- Contract valid from  

- Contract valid until  

- The proposed penalty in 

case of not delivering 

the needed flexibility 

service (per activation) 

equals the X% of the 

whole activation cost 

Input for long term 

contract_2 

- Building Flexibility table 

 

The Building flexibility table 

gives information about the 

Building answers to DSO 

Flexibility table: of which 

month, of which specific 

day, how much flexibility is 

provided for how long. 

Beside of this there is 

calendar in Annual module 

which helps determine the 

type of day accordance 

with the specific dates of 

the year. It is crucial that 

the Building knows on 

which date of the year what 

kind of flexibility is 

provided. This is the basis 

of the long term contract, 

this is the „promise“ of the 
Building. 

Module subpart: Long term contract 

preparation 

- The provided amount of flexibility by Bulding 

in kWh 

- Reservation part of Flexibility unit price 

- Activation part of Flexibility unit price 

- Reservation fee for the contractual period 

- The fee of Sum of Activations 

- The maximum size of Flexibility in kW 

- The maximum duration of Flexibility 

- Number of activations during period 

The provided amount of flexibility in kWh:The 

sum of activation service in kWh from 

calculation table based on Building Flexibility 

tale (the module summarizes the activations in 

kWh based on typical days and the number of 

the typical days in the year). 

Reservation fee for the contractual period: 

based on EUR/kWh/15 min unit price, the 

provided flexibility in kWh and  the overall 

number of 15-minute time intervals of flexibility 

in the contracting period 

The fee of Sum of Activations: The product of 

the Activation part of Flexibility unit price and 

The provided amount of Flexibility by Building in 

kWh 

The maximum size of Flexibility in kW: Based on 

the provided flexibility table of the Building here 

we indicate the maximum size of provided 

flexibility. 

The maximum duration of flexibility: Based on 

the provided flexibility table of the Building here 

we indicate the maximum duration of provided 

flexibility, the calculator seeks the activation in 

the year with the maximum duration. 

Number of activations during period: The 

number of all activation counted based on the 

Building flexibility table. 

Output for 

long term 

contract 
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remarked with “Manual entry”: 

 

 

 

The entire LT module can be found below as an embedded file, the Multiannual subpart can be found 

in the excel: 

3Smart_LT 

module_v4.xlsm
 

  

Flexibility service

1) Contract valid from 01.01.2019. dd.mm.yyyy.

2) Contract valid until 31.12.2019. dd.mm.yyyy.

3) 
Est. no. of activations 

during period 
227

Practically here will the number of activation be calculated within 

the contractual periode, i.e. the number of activations from 

Provided flexibility table by the Building 

4) 
Maximum Size of service 

in power (kW) 
97,72913636

The algorithm seeks the maxumum power within the Flexibility 

table provided by the Building (i.e. the maxumim in the column 

"Provided flexibility by Building [kW]")

5) 
Max. duration of service 

per activation (h) 
5,00 The algorithm seeks the maxumum duration within the Flexibility 

table provided by the Building (i.e. the maxumim time interval)

6) On - Trigger 
Signal from the DSO or according to DA AC OPF

calculator Manual entry

7) Off - Trigger 
Maximum: see "Max.duration of service per activation"

  from “on”-signal, or by earlier signal from the DSO
From "Max.duration of service per activation(h)" and partly 

Manual entry

8) 
Maximum allowed 

activation time 

15 min (but it depends of the capability of the Customer

process technology) Manual entry

Deviation in max. duration: +/- min
Manual 

entry

Deviation from, On - Trigger: +/- min
Manual 

entry

Deviation in size of service: +/- % of kW
Manual 

entry

Acceptable no. of unsuccessful activations (above it

terminate contract): 
pcs

Manual 

entry

10)
Unit price of Reservation 

(EUR/kW/(15min))
0,016245729

11)
Unit price of Activation 

(EUR/kWh)
0,064982918

12)
Reservation fee for the 

contractual period
1835,633776

13)

Activation fee for the 

whole contractual 

period

1835,633776

14)
Average activation 

price/activation
8,086492405

Since during the whole contractual periode the duration and size 

of activation varies day by day, therfore the whole amount of 

Activation fee ("Activation fee for the whole contractual 

period")will be diveded by the number of activation from "Est. 

no. of activations during period "

15) Pricing  3671,267552
Reservation fee for the whole contractual periode (in EUR)+ 

number of activation*Average activation price (inEUR)=EUR

0,129965836

Calculation of penalty in case of  failed delivery of one 

activation(zero activation): The fee of Sum of Activations* 

Percentage of the Activation fee for the whole contractual 

period. In case of partial service provision the slope of penalty 

curve can be found in "Input for longtermcontract_1" sheet of 

the Multiannual module

Manual entry - Y times of failed delivery → termination of the contract
17) Building offer accepted no Manual entry yes/no

Service name 

9) Quality of Service 

16) Penalty if failed supply 

Output for long term contract 
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Flow chart for Multi annual software module 

Start of Multiannual 

planning and calculation

Inputs for flexibility cost:

- WACC

- Inflation

- Ratio of used flexibility price

- The cost of investment (this 

is the cost of investment if we 

could not use flexibility)

Calculation of 

available resource

Output of flexibility cost:

- Maximum price of 

flexibility

- Used price of flexibility 

(maximum*ratio)

Input for unit 

price calc._1:

- Reservation 

ratio

- Activation ratio

Input for unit 

price calc._2:

- DSO Flexibility 

table from Annual 

module

Unit price 

calculation

Output of unit price 

calculation:

- Reservation part of 

Flexibility unit price

- Activation part of 

Flexibility unit price

Write into 3Smart 

Database:

 - Reservation part of 

Flexibility unit price

- Activation part of 

Flexibility unit price

Read from 3Smart 

Database:

- DSO Flexibility table from 

Annual module

Input for 

longtermcontract_1:

- Contract valid from 

- Contract valid until 

- The proposed penalty 

in case of not delivering 

the needed flexibility 

service (per activation) 

equals the X% of the 

whole activation cost

Input for 

longtermcontract_2:

- Building Flexibility 

table from Database

Read from 3Smart 

Database:

- Building Flexibility table 

from Database

Sending Flexibility 

request to Building 

with flexibility 

prices

Write into 3Smart Database:

 - DSO Flexibility table from 

Annual module

- Reservation part of Flexibility 

unit price

- Activation part of Flexibility 

unit price

-Penalty

Long term contract 

preparation

BEMS 

calculation

Write into 3Smart 

Database:

- Building Flexibility table 

into Database

Output for long term contract:

Contract valid from 

Contract valid until 

Est. no. of activations during period 

Maximum Size of service in power (kW) 

Max. duration of service per activation

On - Trigger 

Off - Trigger 

Maximum allowed activation time 

Quality of Service 

Unit price of Reservation (EUR/kWh)

Unit price of Activation (EUR/kWh)

Reservation fee for the contractual period

Activation fee for the whole contractual period

Average activation price/activation

Pricing  

Penalty if failed supply 

+Appendix: Building Flexibility table
End

Edited and validated 

long term contract

Sent to Building
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From the above flow chart, it can be deduced where is necessary a Database interaction.  
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