
	
	
	

	
	
	
	
Fostering	Innovation	in	the	Danube	Region	through	
Knowledge	Engineering	and	IPR	Management	
	
	
	
	
	
	

Output	3.2.	Knowledge	database	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

2

	
	
	 	

3

	

	
	
	
	
	
	 	

Project	Acronym	 KnowING	IPR	
Project	Number	 DTP2-076-1.1	
Project	URL	 http://www.interreg-danube.eu/approved-

projects/knowing-ipr	
Project	
Coordinator	

Faculty	of	Information	Studies	in	Novo	mesto,	Slovenia	
Name	 Tamara	

Valič	
E-mail	 tamara.valic@fis.unm.si	

Output	Name	 Knowledge	database	
	

Output	Number	 O.3.2	
Responsible	
Author(s)	

FIS,	all	partners	
	

Contractual	Date	
of	Delivery	

Period	3	

Status	 Final	Version	
Quality	
assurance	
readers	

	
Klara	Remec,	Quality	manager	

4

	

Table	of	Contents	
Introduction ... 6

Structure	of	the	Knowledge	database	Output ... 6

Data	acquisition	module ... 7

Technologies	Used .. 7

Use	Cases .. 7

User	Interface .. 8
List	view ... 8
Details	view .. 9
Logs	view ... 9

Data	Structure.. 10

Sources	database	module ... 11

Strategies .. 11
MongoDB	Query	Creation .. 13
Query	Analysis ... 13

ElasticSearch .. 13

Data	synchronization .. 14

Category	System .. 16
Category	endpoints .. 16
Confirmed	results .. 16

Knowledge	database	model ... 18

Use	Cases .. 18

Context .. 18

Technologies	Used .. 19

Model .. 19

Category	table .. 21

Category	references	table .. 21

Category	type	table ... 22

5

Mongo	statistics	table ... 22

Query	table ... 23

Reference	table .. 23

Report	table ... 24

Report	references	table .. 25

Sources	table .. 25

Examples .. 26
Example	1	–	The	query	is	found	exactly	in	the	Knowledge	Database .. 28
Example	2	–	The	query	is	found	indirectly	in	the	Knowledge	Database ... 28
Example	3	–	The	query	is	not	found	in	the	Knowledge	Database .. 28

	
	 	

6

Introduction	
	
The	 KnowING	 IPR	 project	 targets	 the	 topic	 of	 technology	 transfer,	 with	 specific	 focus	
towards	 managing	 intellectual	 property	 rights	 in	 SMEs	 as	 a	 factor	 of	 innovation	 and	
competitiveness.	 The	 project	 is	 funded	 under	 Danube	 Transnational	 Programme	 and	 is	
addressing	 Programme	 Specific	 Objective	 1.1.	 Improve	 framework	 conditions	 for	
innovation.	Apart	from	that,	the	Project	supports	PA	8	Competitiveness	of	enterprises	of	the	
Danube	region	of	the	Action	Plan	of	the	European	Strategy	for	the	Danube	Region	(EUSDR).		
This	document	serves	as	a	description	of	the	tool	developed	within	WP3,	Activities	A3.2.	Data	
acquisition	and	A3.3	Knowledge	generation.		
The	Knowledge	base	will	be	used	as	a	main	data	source	for	users’	queries.	It	will	serve	as	a	
repository	where	structured	data	about	research	queries	will	be	stored	after	application	of	
knowledge	engineering	methods	will	be	applied	to	the	data	retrieved	from	the	sources.	The	
Output	 is	extremely	technological	 in	 its	nature,	and	 is	a	result	of	very	specific	knowledge	
(application	of	knowledge	engineering	algorithms).	As	such	it	fits	well	with	overall	scope	and	
plan	 on	 services	 offered	 by	 KnowING	 HUB	 as	 will	 be	 developed	 at	 later	 stages	 of	 the	
KnowING	IPR	project.		
	
Structure	of	the	Knowledge	database	Output	
	
The	 Output	 is	 structure	 in	 three	 chapters:	 first	 chapter	 describes	 the	 module	 that	 was	
developed	to	acquire	the	data	(national	and	international	patenting	databases).	Second	part	
of	the	Output	describes	the	sources	database	module	(module	that	structures	the	databases	
so	that	in	the	later	stage	the	queries	are	possible	within	several	databases	in	one	place).	The	
last	part	of	 the	Output	presents	 the	structure	and	functioning	of	 the	Knowledge	database	
with	all	the	data	in	it.	It	presents	the	structure	how	the	queries	are	conducted	and	what	can	
be	the	results	by	the	queries.		 	

7

Data	acquisition	module	
Below	is	the	description	on	the	module	that	was	developed	to	receive	and	structure	the	data.		
	
Technologies	Used	
For	 the	 development	 of	 Data	 Administration	Module	 (DAM)	we	 use	Windows	 10	 as	 the	
underlying	 operating	 system.	 The	 major	 technologies	 used	 across	 the	 application	 is	
MongoDB	version	3.9.1	serving	as	the	primary	Sources	database	and	Java	1.8	installed	on	it.	
The	 technologies	 chosen	 for	 the	development	stage	were	 carefully	 selected	based	on	 the	
main	 priorities	 of	 the	 project	 and	with	 the	 aim	 for	 the	 project	 source	 code	 to	 be	 easily	
readable	and	modifiable	by	any	other	developers.		
The	next	table	is	an	overview	of	free	third-party	libraries	we	use	for	development.	

Name	 Version	

MariaDB	JDBC	 2.4.0	
MongoDB	Java	Driver	 3.9.1	
Jettison	 1.4.0	
Apache	Commons	Lang	 3.0	
JSON	 20180813	
Apache	 Commons	
DbUtils	

1.7	

Jackson	Core	 2.9.8	
TestFX	 4.0.1	
JUnit	 4.12	
Guava	 14.0.1	

Use	Cases	
The	main	use	cases	in	the	Data	Administration	Module	are:	

- Loading	data	to	the	sources	database	
- Creating	proper	indexes	on	the	sources	database	
- Creating	metadata	for	new	data	sources	
- Configuring	 file	 locations	of	 files	related	to	data	sources	–	mapping	 files,	structure	

files	
- Managing	the	metadata	for	data	sources	–	creation,	deletion,	update	
- Managing	expiration	of	data	sources	

	 	

8

User	Interface	
The	interface	of	the	application	is	pretty	straight	forward.	The	image	below	shows	the	user	
interface	of	the	Data	Administration	Module.	
	

	
List	view	
The	main	part	of	 the	appplication	consists	of	a	 list	view,	containing	a	 list	of	data	sources	
metadata	present	in	the	Data	Sources	DB.	Aboe	the	list	view,	there	is	a	refresh	button	which	
refreshes	the	list	of	data	sources	from	the	database	and	a	Refresh	interval	button	which	
resets	the	update	interval	for	the	selected	list	item.		

9

Details	view	
The	right	side	of	the	application	contains	the	detail	view	for	the	selected	item	in	the	listview.	
It	contains	all	the	metadata	stored	for	each	data	source.	The	details	information	about	a	data	
source	can	be	edited	using	the	Edit	button	and	deleted	using	the	Delete	button.	If	the	selected	
data	 source	 contains	 the	 implementation	 of	 a	 data	 loader,	 it	 is	 possible	 to	 load	 it	 to	 the	
database.	This	is	done	using	the	Load	to	collection	button	which	attempts	to	load	files	from	
the	 file	 system	 path	 and	 insert	 them	 to	 the	 destination	 collection,	 specified	 in	 the	
category	type	field.		

Indexes	 for	 each	 data	 source	 are	 created	 automatically,	 however	 it	 is	 possible	 to	
trigger	the	indexing	manually	by	clicking	on	the	Create	Indexes	button.		
The	following	is	the	list	of	all	available	metadata	for	each	data	source:	

- Name	 –	This	 is	 a	mandatory	 field,	 it	 serves	as	an	 identification	name	 for	 the	data	
source	

- Description	–	Provides	a	brief	description	of	the	data	source	
- URL	–	Contains	the	source	URL,	where	the	data	source	comes	from	
- Category	type	–	Specifies	the	type	of	data	(patents,	publications,	etc.)	
- Licence	type	–	Specifies	the	type	of	licence	(FREE,	Subscription-based,	Paid)	
- Date	last	updated	–	The	date	the	data	source	was	last	updated	
- Scheme	file	–	Points	to	the	file	with	the	structure	of	the	particular	data	source	
- Mapping	file	–	Mandatory	field	pointing	to	the	mapping	file	for	the	data	source	
- Licence	file	–	Pooints	to	the	file	with	licence,	if	exists	

Each	data	field	also	contains	information	about	its	validity,	specified	by	the	update	
interval	field.	The	update	date	can	be	updated	using	the	reset	interval	button.	The	bottom	
of	the	page	contains	utility	tools	for	bulk	zip	extraction	of	files	from	a	directory	and	bulk	
conversion	of	files	from	a	source	directory	to	the	target	directory.	At	the	very	bottom,	there	
is	a	label	indicating	the	status	of	current	operation.	

	
Logs	view	
The	 bottom	 right	 corner	 displays	 log	messages	 from	 the	 application.	 The	 bottom	 panel	
shows	the	current	status	of	the	application.	
	
	 	

10

Data	Structure	
There	needs	to	be	a	common	set	of	fields,	which	will	be	present	in	each	data	source	and	each	
data	source	will	‘map’	its	own	structure	to	this	common	one.		
The	common	structure	for	patent	data	contains	the	following	fields:	

- Title	
- Abstract	
- Patent	number	
- Year	granted	
- Date	
- List	of	authors	
- List	of	owners	
- Language	
- Country	
- Status	

The	common	structure	for	publication	data:	
- Title	
- Abstract	
- Date	
- List	of	authors	
- Language	
- Country	
- Publisher	
- Venue	
- Keywords	
- DOI	
- Issue	
- Fields	of	study	

	
	
	 	

11

Sources	database	module	
	

This	document	should	provide	an	overview	of	the	process	of	searching	relevant	data	on	the	Sources	
database.	The	main	strategies	are	presented	as	well	as	more	advanced	methods	that	were	used	
during	the	searching	process.	

Strategies	

This	 section	 describes	 the	 strategies	 used	 when	 performing	 the	 searches	 on	 the	 target	 Sources	
database.	

	The	process	of	query	processing	consists	of	several	stages:	

• Submit	query	
• Send	query	to	the	REST	endpoint	
• Accept	query	at	Knowledge	Generation	Core	
• Analyze	and	preprocess	the	query	
• Check	the	cache	for	query	
• If	the	query	is	found	in	the	cache:	

1. Retrieve	report	from	the	cache	
2. Serialize	report	and	send	to	the	client	

• If	the	query	is	not	found	in	the	cache:	
1. Create	a	simple	query	to	the	MongoDB	or	ElasticSearch	database	
2. If	results	are	found:	

1. Create	and	cache	the	new	report	
3. If	results	are	not	found	and	MongoDB	is	used:	

1. Run	extended	query	
2. Create	and	cache	the	new	report	

• Serialize	report	and	send	back	to	the	client		

The	image	on	Figure	1	Flow	chart	of	the	query	processing	shows	the	flow	of	events	 from	the	
point	the	query	is	submitted	to	the	server	until	the	results	are	returned	back	to	the	client.	This	flow	
of	events	is	valid	if	the	MongoDB	database	is	used	for	searching.	In	case	the	ElasticSearch	is	used,	
only	a	single	query	is	run.	

	

12

	
Figure	1	Flow	chart	of	the	query	processing	

	 	

13

MongoDB	Query	Creation	

The	creation	of	the	query	to	the	MongoDB	database	consists	of	two	stages,	the	first	one	being	a	quick	
query,	followed	by	an	extended	query,	running	a	more	thorough	search.	

• Quick	query	

The	quick	query	is	performed	at	the	start	of	each	search	request.	It	is	limited	to	only	a	few	
seconds	of	execution	and	the	method	for	searching	is	based	only	on	exact	match.	If	the	quick	
query	does	not	return	any	results	by	the	end,	the	extended	query	is	performed.	

• Extended	query	

Is	not	bound	by	a	fixed	timeout,	the	user	however	can	specify	after	how	much	time	the	query	
searching	should	terminate.	

Query	Analysis	

To	 retrieve	 enhanced	 results	 to	 the	 user’s	 queries,	 an	 analysis	 of	 the	 query	 is	 performed.	 An	
implementation	of	the	WordNet	lexical	database	is	being	used.	The	program	extracts	words	from	the	
query	and	finds	similar	words,	hypernyms,	and	hyponyms	from	the	WordNet	hierarchy	tree.	This	
enables	us	to	enhance	the	results	by	not	only	searching	for	the	specified	terms	but	also	words	of	
similar	meanings.	

	The	following	example	illustrates	the	usage	of	the	WordNet	Lexical	database:	

The	user	searches	for	the	expression	“fast	car”.	The	query	is	analyzed	and	words	“fast”	and	“car”	are	
replaced	by	a	sequence	of	similar	words	(synonyms,	hypernyms,	hyponyms…)	

The	resulting	query	run	on	the	database	will	look	something	like	this:	

“fast	agile	brisk	rapid	car	vehicle	auto	automobile”.	Between	tokens,	there	is	an	OR	operator,	meaning	
any	of	the	tokens	need	to	be	present	in	order	for	the	document	to	match.	

	
ElasticSearch	

ElasticSearch	 is	 a	 highly	 scalable	 open-source	 full-text	 search	 and	 analytics	 engine.	 It	 allows	 for	
storing,	searching,	and	analyzing	big	volumes	of	data	quickly	and	in	near	real	time.	It	 is	generally	
used	 as	 the	 underlying	 engine/technology	 that	 powers	 applications	 that	 have	 complex	 search	
features	and	requirements.	

14

The	majority	of	user	queries	is	performed	using	ElasticSearch.	By	default,	we	use	the	implementation	
of	simple_query_string	for	searching.	The	simple	query	string	supports	the	following	operators:	

- +	signifies	AND	operation	

- |	signifies	OR	operation	

- 	-	negates	a	single	token	

- 	"	wraps	a	number	of	tokens	to	signify	a	phrase	for	searching	

- *	at	the	end	of	a	term	signifies	a	prefix	query	

- (and)	signify	precedence	

- ~N	after	a	word	signifies	edit	distance	(fuzziness)	

- ~N	after	a	phrase	signifies	slop	amount	

	
Data	synchronization	

ElasticSearch	(ES)	is	used	as	a	complementary	database	to	MongoDB.	In	order	to	be	able	to	search	
using	ES,	we	needed	to	implement	a	synchronization	mechanism	that	would	allow	to	transfer	the	
data	from	MongoDB	to	ES.	The	final	solution	uses	a	third	party	library	Monstache	which	allows	for	
real	time	data	synchronization	from	MongoDB	to	ES.		However,	it	was	not	necessary	to	synchronize	
whole	documents,	as	it	would	only	increase	the	storage	size	occupied	by	the	data	sources	as	well	as	
slowing	down	the	overall	search	performance.	Therefore	while	MongoDB	stores	whole	documents,	
in	ES	we	only	index	a	subset	of	fields	present	in	MongoDB.	These	fields	are	called	filters,	as	they	are	
used	for	filtering	by	users.	

The	following	list	shows	the	fields	synchronized	from	MongoDB:	

For	patents,	the	common	fields	extracted	from	available	data	sources:	(The	fields	after	the	
dash	in	italics	are	the	exact	field	names	which	should	be	used	for	filtering)	

- Patent	number	–	number	
- Title	-	title	
- Abstract	-	abstract	
- Date	granted	-	date	
- Authors	-	authors.name	
- Owners	-	owners.name	

15

- Country	-	country	
- Language	-	lang	
- Status	-	status	

	
	
For	publications,	we	extracted	the	following	fields:	

- Title	-	title	
- Abstract	(Microsoft	Academic	Graph	does	not	have	them)	-	abstract	
- Year	(date)	-	date	
- Authors	-	authors.name	
- Publisher	-	publisher	
- Fields	of	study	-	fos	
- Keywords	-	keywords	
- Issue	-	issue	
- URL	-	url	
- DOI	-	doi	
- Venue	-	venue	
- Language	-	lang	

	
This	means	that	the	intersection	between	patent	and	publication	data	produces	the	following	
common	fields:	

- Title	
- Abstract	(Again,	not	all	documents	have	it)	
- Date	
- Authors	
- Language	

	
	
	 	

16

	

Category	System	

Sometimes	 users	 do	 not	want	 to	 search	 for	 anything	 specific,	 but	 rather	 browse	 through	 all	 the	
patents	in	a	certain	category.	For	these	purposes,	the	server	implements	a	category	system	which	
enables	 users	 to	 interact	 with	 patents	 in	 specific	 categories.	 A	 category	 tree	 was	 implemented,	
storing	various	categories	in	a	tree	structure.	The	client	can	request	to	print	the	whole	tree	or	a	
subtree	of	a	specific	category.	The	output	can	be	either	in	plaintext	or	in	JSON	format.	

	

Category	endpoints	

The	 server	provides	 several	endpoints	methods	 to	 interact	with	 the	 category	 system.	The	 exact	
specifications	of	the	endpoints	are	described	in	the	document	REST	API	Specification.	

The	most	important	endpoint	methods	are	the	following:	

-				 /category/tree/plaintext	-	Prints	the	whole	category	tree	in	plaintext	

-				 /category/tree/json	-	Prints	the	whole	category	tree	in	JSON	format	

-				 /category/tree/json?name=Wheels	 -	 Prints	 category	 subtree	 from	 the	 specified	
category	name	(Wheels)	

-				 /category/get/rims/1	 -	 Returns	documents	 associated	with	 the	 specified	 category	
(rims)	

Confirmed	results	

The	 process	 of	 retrieving	 the	 documents	 in	 a	 certain	 category	 is	 automated,	 meaning	 it	 is	 not	
necessary	to	manually	categorize	each	patent	to	a	category,	but	it	is	done	automatically.	However,	to	
increase	the	accuracy	of	the	results,	it	is	possible	to	manually	mark	patents	as	belonging	to	a	certain	
category.	 These	 patents	 will	 then	 be	 placed	 above	 others	 in	 the	 list	 of	 results.	 Patents	with	 the	
manually	assigned	category	are	called	confirmed	results.	

The	URLs	of	confirmed	results	are	stored	in	the	database,	ensuring	they	can	be	retrieved	as	fast	as	
possible.	The	whole	process	of	retrieving	patents	for	a	certain	category	looks	like	this:	

• The	user	submits	a	request	to	the	endpoint	(e.g.	/category/get/rims/1)	on	the	server.	
• The	server	validates	if	the	name	of	the	category	is	valid	

17

• If	the	category	is	valid,	the	Knowledge	database	is	queried	and	a	list	of	confirmed	results	for	
the	category	is	fetched.	

• If	there	are	enough	results	to	fill	the	page,	the	results	can	be	returned	immediately.	
• If	the	number	of	results	is	less	than	the	size	of	the	page,	the	rest	is	fetched	directly	from	the	

Sources	database.	
• Next,	duplicate	records	are	found	and	removed.	
• Finally,	the	confirmed	results	are	put	to	the	front	of	the	list.	

The	Figure	2	shows	the	process	of	retrieving	existing	and	storing	new	confirmed	results.	

	
Figure	2	Flow	chart	of	retrieving	and	storing	confirmed	results	

	
	
	

18

	

Knowledge	database	model	
	
	
The	Knowledge	database	is	a	relational	database	running	on	MariaDB.	It	is	a	complementary	
database	to	the	Sources	database.	Apart	from	containing	metadata	about	the	acquired	data	
sources,	 it	 also	 provides	 a	 cache	 mechanism	 to	 speed	 up	 the	 performance	 of	 retrieving	
common	queries	by	storing	previously	run	queries	along	with	the	returned	results.	
	
Use	Cases	
The	Knowledge	Database	(KD)	represents	a	temporary	data	storage	for	queries	frequently	
asked	by	users.	

The	main	use	cases	are	the	following:	

• Storing	metadata	about	data	sources	present	in	the	Sources	database	
• Storing	common	queries	and	responses	to	them	
• Keeping	relationships	between	generated	reports	and	user	queries	

It	 is	 a	 repository	 where	 structured	 data	 about	 searched	 queries	 is	 being	 stored	 after	
knowledge	engineering	methods	are	applied	 to	 the	data	 retrieved	 from	 the	data	 sources.	
Therefore,	 the	 main	 advantage	 of	 the	Knowledge	 Database	is	 the	 ability	 to	 speed	 up	 the	
retrieval	 of	 results	 to	 the	 user.	 This	 is	 especially	 noticeable	 in	 queries	 that	 run	 longer.	
The	Knowledge	Database	is	also	used	to	store	metadata	about	the	acquired	data	sources.	The	
metadata	contain	fields	like	name	of	the	data	source,	category	of	data,	source	URL,	type	of	
licence	etc.	

Context	
The	integration	of	the	Knowledge	Database	plays	a	major	role	in	the	process	of	searching	the	
data.	The	following	is	an	example	of	when	the	Knowledge	Database	can	be	used	in	practice:	

• User	sends	query	to	the	Knowledge	Generation	Core	application’s	endpoint	
• Query	is	analyzed	and	preprocessed	
• Knowledge	Database	does	a	check	if	query	already	present	

o If	the	query	is	found	in	the	cache:	
§ Retrieve	report	from	the	cache	directly	from	Knowledge	Database	

19

o If	the	query	is	not	found	in	the	cache:	
§ Create	a	query	to	the	ElasticSearch	database	
§ Create	and	cache	the	new	report	to	the	Knowledge	Database	

• Serialize	report	and	send	back	to	the	client	

Technologies	Used	
The	Knowledge	Database	is	a	relational	SQL	database	which	runs	on	MariaDB.	The	Knowledge	
Generation	Core	application	and	the	Data	Administration	Module	use	MariaDB	JDBC	driver	in	
version	2.4.0	to	connect	to	the	Knowledge	Database.	
	
Model	
The	following	image	shows	the	entity	relationship	model	of	the	Knowledge	database.	As	of	
now,	 the	Knowledge	Database	 consists	 of	 9	 tables,	mainly	 concerning	 about	 storing	 user	
queries	and	reports	generated	by	the	Reports	Generation	Module.		
	
	

20

	
	

	

21

	
	
Category	table	
The	 Category	 table	 contains	 available	 categories	 for	 searching	 with	 the	 number	 of	
documents	present	for	this	category.	
COLUMN_
NAME	

IS_NULL
ABLE	

COLUMN_CO
MMENT	

COLUMN_
TYPE	

CHARACTER_MAXIM
UM_LENGTH	

COLUMN
_KEY	

categoryId	 NO	 		
int(10)	
unsigned	 \N	 PRI	

name	 NO	
Name	 of	 the	
category.	

varchar(1
00)	 100	 		

totalDocum
ents	 NO	

Temporary	
total	 number	
of	 documents	
assigned	 to	
this	category.	

int(10)	
unsigned	 \N	 		

	
Category	references	table	
Associates	 categories	 with	 their	 respective	 referenced	 documents	 which	 fall	 under	 that	
category.	
COLUMN_NA
ME	

IS_NUL
LABLE	

COLUMN_C
OMMENT	

COLUMN_
TYPE	

CHARACTER_MAXI
MUM_LENGTH	

COLUM
N_KEY	

categoryRefere
ncesId	 NO	 		

int(11)	
unsigned	 \N	 PRI	

categoryId	 NO	 		
int(11)	
unsigned	 \N	 	

referenceId	 NO	 		
int(11)	
unsigned	 \N	 	

	
	 	

22

Category	type	table	
A	code	table	for	different	categories	of	data	sources.	The	options	can	be	publications,	patents,	
trademarks	etc.	
COLUMN_NA
ME	

IS_NUL
LABLE	

COLUMN_C
OMMENT	

COLUMN_
TYPE	

CHARACTER_MAXI
MUM_LENGTH	

COLUM
N_KEY	

categoryTypeI
d	 NO	 		

int(10)	
unsigned	 \N	 PRI	

name	 NO	

Name	 of	 the	
data	 source	
category.	
Patent	 or	
publication	
are	 valid	
examples	 of	
data	 source	
categories.	

varchar(10
00)	 1000	 		

	
Mongo	statistics	table	
Contains	statistics	specific	to	MongoDB,	like	the	sizes	of	different	collections	etc.	

COLUMN_NAME	
IS_NULL
ABLE	

COLUMN_C
OMMENT	

COLUMN
_TYPE	

CHARACTER_MAXI
MUM_LENGTH	

COLUM
N_KEY	

mongoStatisticsI
d	 NO	 		

int(10)	
unsigned	 \N	 PRI	

patentCollection
Size	 NO	

The	 size	 of	
the	 patent	
collection	 in	
bytes.	

int(10)	
unsigned	 \N	 		

publicationColle
ctionSize	 NO	

	The	 size	 of	
the	
publication	
collection	 in	
bytes	

int(10)	
unsigned	 \N	 		

patentCollection
Count	 NO	

Number	 of	
records	 in	
the	 patent	
collection.	

int(10)	
unsigned	 \N	 		

23

publicationColle
ctionCount	 NO	

	Number	 of	
records	 in	
the	
publication	
collection.	

int(10)	
unsigned	 \N	 		

Query	table	
This	Query	table	contains	data	about	user	queries.	The	stored	queries	were	previously	run	
on	 the	 Sources	 database	 and	 were	 cached	 for	 faster	 later	 access.	 Duplicate	 checks	 are	
performed	by	the	rawQueryText	field.	
COLUMN_NA
ME	

IS_NUL
LABLE	

COLUMN_COM
MENT	

COLUMN_
TYPE	

CHARACTER_MAX
IMUM_LENGTH	

COLUM
N_KEY	

queryId	 NO	
Unique	 key	 of	 a	
query	

int(10)	
unsigned	 \N	 PRI	

hash	 NO	

The	 hashed	
value	 of	 the	
query	string	 char(60)	 60	 		

rawQueryTex
t	 NO	 Raw	query	text	

varchar(1
0000)	 10000	 		

normalizedTe
xt	 YES	

	The	 normalized	
text	of	the	query	 text	 65535	 		

lastSubmitted
Date	 YES	

The	 date	 of	 last	
query	
submission	 datetime	 \N	 		

	
Reference	table	
Represents	 a	 document	 by	 its	 URL.	 In	 MongoDB,	 the	 unique	 URL	 is	 the	 document'd	
identification	number.	
COLUMN_NA
ME	

IS_NUL
LABLE	

COLUMN_C
OMMENT	

COLUMN_
TYPE	

CHARACTER_MAXI
MUM_LENGTH	

COLUM
N_KEY	

referenceId	 NO	 		
int(10)	
unsigned	 \N	 PRI	

url	 NO	

The	 URL	 to	
the	
reference	

varchar(10
00)	 1000	 		

lastCheckDate	 YES	 	 datetime	 \N	 		
	

24

Report	table	
This	 table	 contains	 the	actual	 report	generated	 from	 the	Report	Generation	Module.	Each	
report	is	associated	with	a	query.	The	Knowledge	Generation	Core	application	first	attempts	
to	retrieve	data	 from	this	 table	upon	receiving	a	user	request	query.	 If	 the	desired	query	
report	 is	 not	 found	 in	 the	Knowledge	 Database	 (KD),	 a	 new	 query	 is	 constructed	 to	 the	
Sources	Database	and	the	result	is	saved	to	the	KD.	

COLUMN_N
AME	

IS_NU
LLABL
E	 COLUMN_COMMENT	

COLUMN
_TYPE	

CHARACTER_M
AXIMUM_LENG
TH	

COLU
MN_K
EY	

reportId	 NO	 		
int(10)	
unsigned	 \N	 PRI	

queryId	 NO	 		
int(10)	
unsigned	 \N	 MUL	

docsPerPag
e	 NO	

Number	 indicating	 the	
number	 of	 results	 per	
page	

int(10)	
unsigned	 \N	 		

reportText	 NO	

	The	 actual	 text	 of	 the	
report.	 Contains	
documents	 data	 with	
other	metadata	about	the	
search.		

mediumt
ext	 16777215	 		

dateGenerat
ed	 NO	

Date	the	report	was	 first	
generated.	 datetime	 \N	 		

dateUpdate
d	 NO	

	Date	 the	 report	 was	
updated.	 datetime	 \N	 		

page	 NO	

Number	 indicating	 the	
page	of	results	contained	
in	the	report	

int(11)	
unsigned	 \N	 		

dbEngine	 NO	

	The	 database	 engine	
used	 to	 generate	 the	
report,	 it	 can	 be	 either	
MongoDB	 or	
ElasticSearch.	 Each	
search	 engine	 uses	
slightly	 different	 format	
of	the	reports.	

varchar(
50)	 50	 		

25

sourceType	 NO	

	The	 type	 of	 data	 the	
report	 was	 generated	
from.	 It	 can	 be	 for	
example	 report	 from	
USPTO	 data,	 Microsoft	
Academic	Graph	data	or	a	
report	 from	 ALL	 data	
available.	

varchar(
50)	 50	 		

	
Report	references	table	
Contains	a	list	of	associations	between	reports	and	the	target	document	references.	
COLUMN_NA
ME	

IS_NUL
LABLE	

COLUMN_C
OMMENT	

COLUMN_
TYPE	

CHARACTER_MAXI
MUM_LENGTH	

COLUM
N_KEY	

reportReferen
cesId	 NO	 		

int(10)	
unsigned	 \N	 PRI	

reportId	 NO	
The	ID	of	the	
report.	

int(10)	
unsigned	 \N	 MUL	

referenceId	 NO	

	The	ID	of	the	
document	
reference.	

int(10)	
unsigned	 \N	 MUL	

	
Sources	table	
Each	 data	 source	 contains	 various	 information	 about	 its	 origin	 and	 about	 its	 format	 and	
structure.	The	Sources	table	contains	various	metadata	about	each	of	the	data	source.		

COLUMN_
NAME	

IS_NU
LLAB
LE	 COLUMN_COMMENT	

COLUM
N_TYPE	

CHARACTER_
MAXIMUM_LE
NGTH	

COLU
MN_K
EY	

sourceId	 NO	 		

int(10)	
unsigne
d	 \N	 PRI	

name	 NO	 The	name	of	the	data	source.	
varchar(
1000)	 1000	 		

url	 NO	

The	URL	where	the	updated	
data	 for	 download	 can	 be	
found.	

varchar(
1000)	 1000	 		

26

description	 YES	
The	 description	 of	 the	 data	
source	

varchar(
10000)	 10000	 		

updateInte
rvalDays	 YES	

The	update	interval	in	days.	
The	user	 is	notified	when	 it	
is	time	to	update.	 int(11)	 \N	 		

dateLastUp
dated	 NO	 Date	of	the	last	update.	

datetim
e	 \N	 		

schemaPat
h	 NO	

Path	 to	 the	 schema	 for	 the	
data	source.	

varchar(
1000)	 1000	 		

mappingFil
ePath	 NO	

Path	to	the	mappings	file	for	
the	data	source	

varchar(
1000)	 1000	 		

licenceTyp
e	 YES	

Type	 of	 licence	 associated	
with	the	data	source	

varchar(
1000)	 1000	 		

licenceFile
Path	 YES	 Path	to	the	licence	file.	

varchar(
1000)	 1000	 		

categoryTy
peId	 NO	

The	 type	 of	 category	
assigned	to	this	data	source.	
It	 can	 be	 patents,	
publication,	trademarks	etc.	

int(10)	
unsigne
d	 \N	 MUL	

	
	
Examples	
The	following	examples	demonstrate	the	usage	of	Knowledge	Database	in	the	contect	of	the	
whole	 system.	The	most	 common	scenario	 is	when	 a	 user	 is	 searching	 for	 some	specific	
documents.	The	user	specifies	a	query	which	is	then	sent	to	the	REST	API	from	the	client	web	
application.		
The	flow	of	events	can	be	displayed	using	the	following	flow	chart.	

27

	
Slika	1	The	flow	of	events	when	using	the	Knowledge	Database	

The	following	are	examples	of	how	the	Knowledge	Database	can	aid	in	retrieving	the	desired	
data.		

28

For	illustration,	let's	say	the	user	is	searching	for	»electric	cars	in	Slovenia«.	
	
Example	1	–	The	query	is	found	exactly	in	the	Knowledge	Database	
The	first	scenario	which	can	happen	is	when	the	user	(or	multiple	users)	submit	the	same	
query	multiple	times.	This	scenario	assumes	the	searched	texts	from	the	queries	are	exactly	
the	same.		

- The	query	is	passed	to	the	Knowledge	Generation	Core	
- Knowledge	database	is	queried	for	the	exact	match	
- The	exact	match	query	is	found	–	Contains	the	exact	search	text	»electric	cars	

in	Slovenia«	
- The	report	is	identified	and	retrieved	for	that	query	
- The	Report	Generation	Module	appends	metadata	about	the	search	
- The	report	is	returned	to	the	user	in	an	unchanged	way	

Example	2	–	The	query	is	found	indirectly	in	the	Knowledge	Database	
- The	query	is	passed	to	the	Knowledge	Generation	Core	
- Knowledge	database	is	queried	for	the	exact	match	
- The	exact	match	is	NOT	found	
- Knowledge	database	is	queried	for	the	indirect	match	

o The	keywords	of	the	query	are	analysed	using	WordNet	dictionary	
o The	keywords	are	replaced	with	a	combination	of	synonymous,	hypernymous	

and	 hyponymous	 words	 –	 For	 example,	 the	 text	 query	 »electric	 cars	 in	
Slovenia«	can	be	edited	to:	»electric	cars	OR	vehicles	OR	BMW	OR	Mercedes	in	
Slovenia«	

- The	indirect	match	query	is	found	
- The	report	is	identified	and	retrieved	for	that	query	
- The	Report	Generation	Module	appends	metadata	about	the	search	
- The	report	is	returned	to	the	user	in	an	unchanged	way	

Example	3	–	The	query	is	not	found	in	the	Knowledge	Database	
- The	query	is	passed	to	the	Knowledge	Generation	Core	
- Knowledge	database	is	queried	for	the	exact	match	
- The	exact	match	is	NOT	found	
- Knowledge	database	is	queried	for	the	indirect	match	
- The	indirect	match	is	NOT	found	
- The	query	to	target	Sources	database	is	constructed	
- The	query	is	run	on	the	target	database	
- The	results	are	retrieved	

29

- The	 Report	 Generation	 Module	 generates	 a	 new	 report	 from	 the	 retrieved	
results	

- The	generated	report	along	with	the	original	query	is	saved	to	Knowledge	Database	
for	later	retrieval	

- The	Report	Generation	Module	appends	metadata	about	the	search	
- The	report	is	returned	to	the	user	

	

