

Sediment Management Measures for the Danube

Authors: Coordinated by National Administration "Romanian Waters" with contributions from DanubeSediment project partners (NARW, BME, VUVH, LfU, TUM, BOKU)

Project co-funded by European Union funds (ERDF, IPA)

Project Introduction

Sediments are a natural part of aquatic systems. During the past centuries, humans have strongly altered the Danube River. Riverbed straightening, hydropower dams and dikes have led to significant changes in the sediment load. This sediment imbalance contributes to flood risks, reduces navigation possibilities and hydropower production. It also leads to the loss of biodiversity within the Danube Basin.

To tackle these challenges, 14 project partners and 14 strategic partners came The Danube by Hainburg, Austria. (Philipp Gmeiner/ IWAtogether in the DanubeSediment project. BOKU)

The partnership included numerous sectoral agencies, higher education institutions, hydropower companies, international organisations and nongovernmental organisations from nine Danube countries.

Closing knowledge gaps: In a first step, the project team collected sediment transport data in the Danube River and its main tributaries. This data provided the foundation for a Danubewide sediment balance that analysed the sinks, sources and redistribution of sediment within the Danube - from the Black Forest to the Black Sea. In order to understand the impacts and risks of sediment deficit and erosion, the project partners analysed the key drivers and pressures causing sediment discontinuity.

Strengthening governance: One main project output is the Danube Sediment Management Guidance (DSMG). It contains recommendations for reducing the impact of a disturbed sediment balance, e.g. on the ecological status and on flood risk along the river. By feeding into the Danube River Management Plan (DRBMP) and the Danube Flood Risk Management Plan (DFRMP), issued by the International Commission for the Protection of the Danube River (ICPDR), the project directly contributes to transnational water management and flood risk prevention.

International Training Workshops supported the transfer of knowledge to key target groups throughout the Danube River Basin, for example hydropower, navigation, flood risk management and river basin management, which includes ecology. The project addressed these target groups individually in its second main project output: The Sediment Manual for Stakeholders. The document provides background information and concrete examples for implementing good practice measures in each field.

DanubeSediment was co-funded by the European Union ERDF and IPA funds in the frame of the Danube Transnational Programme. Further information on the project, news on events and project results are available here: www.interreg-danube.eu/danubesediment.

Project Reports

The DanubeSediment project was structured into six work packages. The main project publications are listed below.

A detailed list of all project activities and deliverables is available on our project website: www.interreg-danube.eu/approved-projects/danubesediment/outputs.

- 1) Sediment Monitoring in the Danube River
- 2) Analysis of Sediment Data Collected along the Danube
- 3) Handbook on Good Practices in Sediment Monitoring
- 4) Data Analyses for the Sediment Balance and Long-term Morphological Development of the Danube
- 5) Assessment of the Sediment Balance of the Danube
- 6) Long-term Morphological Development of the Danube in Relation to the Sediment Balance
- 7) Interactions of Key Drivers and Pressures on the Morphodynamics of the Danube
- 8) Risk Assessment Related to the Sediment Regime of the Danube
- 9) Sediment Management Measures for the Danube
- 10) Danube Sediment Management Guidance
- 11) Sediment Manual for Stakeholders

Sediment Management Measures for the Danube

Imprint

Publisher: National Administration "Romanian Waters" (NARW)

Date: November 2019

This report is a deliverable of the project **Danube Sediment Management** - Restoration of the Sediment Balance in the Danube River. DanubeSediment is co-funded by the European Union funds ERDF and IPA in the frame of the Danube Transnational Programme (Project reference number: DTP-1-1-195-2.1). The overall budget is 3 558 581.62 Euros, whereby the ERDF contributes 2 827 421.16 Euros and the IPA contributes 197 373.19 Euros.

Project duration: 01.01.2017 - 30.11.2019

Website: www.interreg-danube.eu/danubesediment

Table of Contents

Introduo	ction	6
1 Repo	ort on sediment management measures	8
1.1 As	ssessment of Good Practices and Potential Measures	8
1.1.1	General considerations	8
1.1.2	Methodological approach regarding the inventory of sediment management measures	9
1.2 Ca	ategories of sediment management measures	14
2 Catal	logue of sediment management measures	.26
2.1 Ca	atalogue structure	26
2.1.1	Background and EU / ICPDR context	26
2.1.2	How and when to use the Catalogue of Good Practices	27
2.2 Co	ost Effectiveness Analysis (CEA) in sediment measures context	30
2.2.1	Introduction	30
2.2.2	Assessment of the effects	31
Conclusi	ions	.33
List of A	bbreviations	.35
Referen	ces	.37

Annexes (in separate archive)

Annex 1: Factsheet of best practice – template

Annex 2: Catalogue of measures

Annex 3a: Factsheets of sediment management measures against bed erosion

Annex 3b: Factsheets of sediment management measures against sedimentation

Introduction

Sediment data assessment along the Danube River and selected tributaries indicates a sediment regime that is disturbed at various scales as a direct effect of the various significant pressures caused by different drivers. In the report "Interactions of Key Drivers and Pressures on the Morphodynamics of the Danube", our project assessed drivers, which cause the alteration of the sediment regime. According to this assessment, the main key drivers "responsible" for the alteration of the sediment regime in Danube River Basin are navigation, flood protection and hydropower (see chapter 1 from report "Interactions of Key Drivers and Pressures on the Sediment Balance of the Danube").

Other significant contributions to the disturbance of the sediment transport are channel realignment, straightening and deepening of the river for navigation purposes (e.g. 87% of the Danube river total length is navigable), the building of chains of hydropower plants on the Upper Danube, the Gabčíkovo hydropower plant and Iron Gate I and II on the Middle and Lower Danube as well as flood protection engineering works along almost the entire Danube river.

Following the DPSIR-concept (Driver-Pressure-State-Impact-Response), the main significant pressures that affect the sediment balance and transport continuity have been identified as dams, weirs, ship locks, groynes, dredging to allow navigation and for ensuring flood protection, dredging for other purposes (i.e. industrial use, ecological restoration), river channel maintenance, regularization works of the river channel, and artificial channels for flood protection, navigation, diversion etc. (see chapter 2 from Report "Interactions of Key Drivers and Pressures on the Sediment Balance of the Danube").

The above-mentioned hydromorphological pressures have a direct impact on the hydromorphological and biological status of surface waters, e.g. dredging and sediment disposal can produce smothering of bed, respectively alteration of invertebrate communities.

In association with the disturbance of the sediment transport and balance, the project has performed a risk assessment for hydromorphology and ecology. The risk assessment includes the sediment related hydromorphological elements by taking into account the morphodynamic processes and the main biotic parameters that would be influenced due to changing of certain hydromorphological parameters (see Report "Risk Assessment Related to the Sediment Regime of the Danube").

The negatively affected morphodynamics lead to severe impacts on the type-specific aquatic communities and water dependent terrestrial ecosystems and thus on the water status. Consequently, in the frame of updating the Danube River Basin Management Plan, the alteration of the sediment balance has been identified as new sub-item of the Significant Water Management Issue "Hydromorphological alterations". This shows that an effective

management of sediment in rivers is becoming increasingly important from an economic, social and environmental perspective.

The ICPDR's basin-wide vision is a balanced sediment regime with undisturbed sediment continuity. The balanced sediment regime enables the long-term provision of appropriate habitats for the type-specific aquatic communities and water dependent terrestrial ecosystems.

The processes controlling sediment transport and sedimentation are dynamic and highly variable. Therefore, an effective sediment management must be site specific, by acting on the level of each significant pressure and understanding the dominant spatial and temporal processes operating by the pressures at the basin-wide level.

Moving towards more sustainable sediment management, this project collected and assessed good practice and potential measures for sediment management. These measures were collected along the Danube River and its main tributaries (i.e. Isar, Inn, Traun, Enns, Morava, Lajta, Raba, Vah, Drava, Tisza, Sava, Velika Morava, Jiu, Iskar, Yantra, Arges, Ialomita, Siret, Prut). Some measures were also collected from outside of the Danube River Basin (e.g. Rhine).

After collecting and processing the good practice and potential sediment management measures in our project, we presented these measures to experts from throughout the Danube River Basin in the frame of "national stakeholder workshops". The experts gave our project team feedback on their experiences with the presented measures and gave us recommendations for including them in our project results, specifically the "Danube Sediment Management Manual". This Manual will entail good practice measures for improving the sediment regime and will address relevant target groups working in sediment management such as hydropower, flood protection, navigation and river basin management.

The results of the project will contribute to the preparation of the next update of the Danube RBMP, to achievement of objectives of the EU Water Framework Directive and update of the Danube Flood Risk Management Plan. The Danube Sediment Management Manual, as well as the Catalogue of Measures will help national authorities to improve sediment management, which will in turn contribute to the development of navigation, reduction of flood risks, and improvement of morphology and river ecology.

The implementation of measures and best practices for improving the sediment regime will be the task for other projects in the future.

1 Report on sediment management measures

1.1 Assessment of Good Practices and Potential Measures

1.1.1 General considerations

To achieve a balanced sediment regime along the Danube and its tributaries, an inventory of lighthouse projects and an assessment of already implemented measures is needed. This may constitute the basis for a future Danube-wide sediment approach. As a first step, the DanubeSediment project collected such measures in the frame of a catalogue of good practices of sediment management measures (see Chapter 2 and Annex 2). The inventory of measures indicates that there are different technical solutions that can be adapted to suit the conditions of a certain river section. Hence, different sections of this report present an array of sediment management measures for dealing with erosion and sedimentation.

The character of a good practice measure is generally validated via post-implementation monitoring of sediment transport in terms of suspended sediments or bedload. Good practices can also be the state-of-the-art measures that an authority or any other responsible entity considers a "good practice" (e.g. specific regulations, handbook, etc.).

There are many definitions of "what does good practice mean?", e.g. SEPA (Scottish Environmental Protection Agency) defines good practice as: "...the course of action which serves a demonstrated need, while minimising ecological harm, at a cost that is not disproportionately". This shows that a key aspect in the sediment context is to understand what is good practice. In order to take actions for improving the sediment regime it is important to understand the morphological process, and to identify the cause of the problem, because they treating the symptoms, we need to address and treat the sediment problem.

There are some cases of measures that improve the sediment balance but are not deemed as "good practice" because they have not yet been sufficiently tested or more research is needed. This does not mean that a measure should be excluded. Instead, we consider it to be a "potential measure" that may be applicable in future sediment management policy.

An Assessment of the scale and the significance of the problem and the interactions with the related driver(s) will help to determine whether or not sediment-related actions are required and it will ensure that any solution is suitable to the scale or magnitude of the problem.

It is important to recognise that any sediment-related measure must be designed to suit sitespecific conditions. Thereby, it is essential for a good practice to consider a set of options to address any river engineering problem or need and to carry out an options appraisal. Without considering a range of options, it is not possible to determine if the selected approach represents the most suitable one.

Within the context of this report, a distinction is made between technical measures and nontechnical measures. Technical measures, or structural measures, refer to physical construction, intervention, or to the application of engineering techniques or technology to improve the sediment regime. Non-technical measures instead are measures not involving physical construction and are of a legislative, administrative, organisational, economic or advisory nature. As such, non-technical measures serve to support the implementation of technical measures by creating incentives for the relevant players in order to modify their policy. One consequence of this is that non-technical measures could have a more long-term, more widespread effect than technical measures, and require coordination at a higher administrative level.

Both technical and non-technical should be considered in sediment management policy. Figure 1 presents a process for choosing good practice measures in a schematic way.

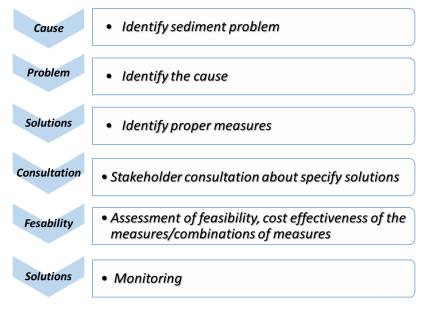


Figure 1: Sediment management measure good practice process

1.1.2 Methodological approach regarding the inventory of sediment management measures

The starting point of the inventory of the sediment management measures was the collection of factsheets. The project partners collected both good practice and potential measures on the Danube River, the major tributaries and some from outside the Danube River Basin i.e. on Rhine, Limmat and Albula River.

In order to have a uniform and proper assessment of the measures, the factsheet includes, besides general aspects, a set of key elements related to sediment measures. This begins with the morphological process (i.e. erosion or sedimentation) because of the alteration of the sediment regime, application area, then looks at the effect in terms of hydro- and

morphodynamics of the river, sediment dynamics and ecology as well as the effects on water users and ecology. In addition, the qualitative assessment of cost effectiveness and the temporal and spatial scale has also been included as key elements (see Annex 1: Factsheets of best practice – template). The factsheet also includes descriptive elements like name of the project, aim and goal of the project, description of the measure, responsible authority, interrelation with other measures, related links, etc.

Figure 2 presents the main key elements addressed in the factsheet on good practice and potential measures.

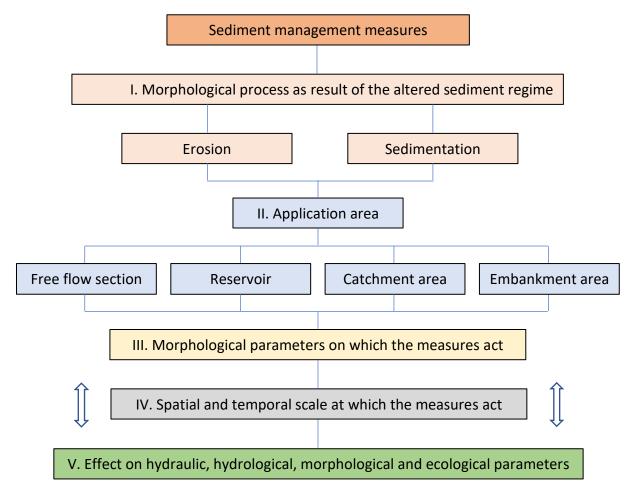


Figure 2: Key elements of the Factsheet for collecting sediment management best practices

The following sections (I-V) include a short description of the key elements, which characterise the good practice and potential measures examples. These key elements are included in the Factsheets (see sections 3.4; 4.2; 4.3; 4.9; 4.10) which practically defines the essence and relevance of the measures.

I. Morphological process as a result of the altered sediment regime

The interruption of longitudinal and lateral continuity by dams and weirs, flood protection and navigation embankment and regulating works directly influence the sediment deficit, which leads to riverbed *erosion*, especially downstream of barriers. On the other hand, we find significant *sedimentation* in several sections along the Danube and major tributaries. Sedimentation in reservoirs is one of the most pressing concerns presently facing river managers and it causes both upstream and downstream impacts, e.g. making the stretch unsuitable for navigation. To find out more about erosion and sedimentation in the Danube, see our project report "Assessment of the Sediment Balance of the Danube". For these reasons, the changes in river processes (i.e. sediment transport – erosion/sedimentation problem) were chosen as a first key aspect in the sediment measures assessment process of our factsheet.

II. Application area

Morphological changes as a result of continuous alteration of the Danube and its tributaries occur in the riverbed along the *free-flowing sections*, as well as in the *catchment area*, *reservoirs* and *embankment sections*. Sediment data assessment confirm both a sediment deficit, but also an increased sediment transport capacity in different free-flowing sections, especially in the embanked sections. A surplus of sediment is observed instead in the impounded sections.

Mitigation of the sediment transport alteration involves different types of measures for different locations, but also taking into consideration the effect of these measures on flood risk, navigation conditions, hydropower production and biodiversity. In the free-flowing sections for example, measures like reducing or optimising the riverbed protection structures or groynes can have a suitable effect on reducing the erosion, while maintaining suitable conditions for navigation. In another case, measures like flushing are efficient in relation with accumulated and deposited sediments in a hydropower plant (HPP) reservoir, thus contributing to the optimal functioning of the HPP.

III. Morphological parameters impacted by the measures

Engineering measures to manage and improve sediment transport are often very complex and they usually rely on the application of very case-specific solutions for sediment management in order to be sustainable.

A set of various key morphological parameters is implicitly interlinked with improving the sediment regime, be it erosion or sedimentation. These parameters are:

- changing in sediment regime;
- increase/decrease of bed resistance;
- reduction/increase the energy slope and
- minimisation/increase of bed shear stress.

For example, measures like granulometric bed improvement, i.e. the feeding of coarser material that is still in the natural grain size spectrum, lead to an increase of bed resistance and implicitly to the increase of sediment transport capacity and to a reduction of erosion. A similar effect could be reached by acting on the energy slope (increasing) and reducing the bed shear stress.

IV. Spatial and temporal impact of measures

Sustainable sediment management should consider different spatial and temporal scales. Different measures act in different ways and, as previously mentioned, an effective basin-wide sediment management requires a site-specific response. Just as the sediment transport processes are dynamic and highly variable in time and space, the measures have different effects in time and space, too.

Local, regional or transboundary effects characterise the spatial scale, whilst short, medium or long term characterise the temporal one.

For example, sediment related measures at the reservoir could have a local effect when talking about small reservoirs. The same measure in a very large reservoir can have a larger spatial effect. The same applies to measures undertaken in the free-flowing sections: increasing the sediment supply or regulation of the sediment dynamics at hydraulic structures (i.e. dams, weirs) has a local effect, whilst e.g. significant riverbank restoration or reconnection of the side arms could have a regional or even a transboundary effect.

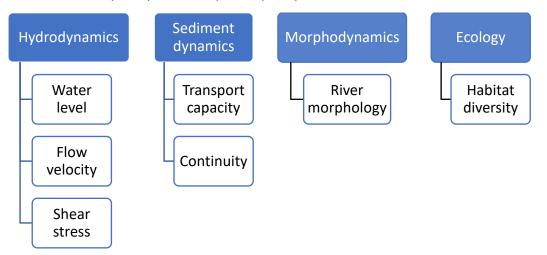
At the same time, the temporal scale of each measure needs to be considered. Measures like stabilisation of the riverbed, regulation of the sediment supply act on a long-term scale. Measures like feeding to maintain the water level conditions in the navigation channel or refeeding dredged sediment in upstream sections to reduce the ongoing riverbed incision act on mid-term scale. The removal or sediment from a reservoir and re-introduction downstream of a dam usually has a short-term effect.

The examples mentioned above are not always the rule. They refer only to good practice measures collected in the project. The assessment of the spatial and temporal scale at which the measure acts on plays an important role when weighing the various decision-making parameters during the course of selecting an efficient combination of measures.

V. Effect on hydraulic, hydrological, morphological and ecological parameters

The goal of improving the sediment regime is directly linked to the effect that the sediment regime improvement measures have on different hydraulic, hydrological, morphological and ecological parameters (Figure 3).

For example, when flushing sediment through sluices, the *water level* in the reservoir is drawn down to allow for sediment-load inflow to pass the reservoir with a minimum of deposition.



Reducing stream *velocity* through engineering works implicitly reduces the erosive capacity of the stream. For example, by river widening works.

Optimising hydraulic structures contributes to the reduction of the transport capacity of rivers and implicitly to the reduction of the *bed shear stress*.

Anti-erosional measures like *removal of natural levees* have a high effect on a river's hydrodynamics by optimising the water level, flow velocity or shear stress (reduced at bank full discharge). Having in view the sediment dynamics and morphodynamics, the effect of this type of measure is medium.

Anti-sedimentation measures undertaken at the head of HPP reservoirs, for example by *construction of gravel bars and islands*, will slightly increase the water level, flow velocity and shear stress and implicitly the transport capacity of sediments.

Figure 3: Categories of parameters affected by sediment regime improvement measures (included in section 4.10 of the Factsheet for collecting the measures, see Annex 1: Factsheet of best practice – template)

At the same time, navigation, hydropower or flood protection related infrastructure works impact the morphodynamics of a river, leading to negative effects, such as the deterioration of type-specific habitats and of the ecological status.

The riverbed substrate, the natural river bank, an adequate hydrological regime and a good water status support "biological quality elements" of a river (see Annex V of Water Framework Directive)¹: fish, macrozoobenthos and macrophytes. According to this EU Directive, when planning sediment measures, one must take the ecological impact of a measure into account to improve and maintain the water status.

¹Annex V of Water Framework Directive accessed on <u>https://eur-lex.europa.eu/legal-content/EN/TXT/</u> <u>?uri=CELEX:32000L0060</u>

1.2 Categories of sediment management measures

Different site-specific sediment management measures, engineering solutions and several non-technical measures, defined as good practices or potential measures have been collected from in- and outside the Danube River Basin, including major selected tributaries mentioned in "Introductory note" (these main tributaries were also, considered in collecting data about drivers and pressures on sediment regime). All these measures are provided in the Catalogue of Measures and are organized in Annex 2.

This section provides an overview of so-called "generic measures" for improving the sediment regime. They have been synthesised based on the key information provided within the factsheets and grouped according to:

- morphological process for which the measures are addressed: anti-erosion vs. anti-sedimentation;
- location: free flowing sections, reservoir, catchment area, or embankment section;
- morphological parameters impacted by the measures (i.e. sediment regime, bed resistance, energy slope, bed shear stress).

Furthermore, the generic measures are presented in an illustrative way by providing indicative information in terms of effect on morphology and ecology.

The inventory of generic measures indicates that there are slightly more measures against sedimentation than ones for stopping bed erosion.

Considering anti-sedimentation measures: those applied at the reservoirs are the most common. This can be explained on the one hand by the significant volume of sediments trapped in the reservoirs, which serves as an important source to mitigate the sediment deficit downstream of the reservoir. On the other hand, the need to reduce the accumulation of sediment in the reservoirs, which affects the purpose of the reservoir (e.g. reduces hydropower generation).

Considering the anti-erosion measures, the inventory indicates a preponderant number of measures that aim to reduce riverbed erosion in the free-flowing sections. This is due to a variety of regulation works for flood protection and navigation, as well as commercial dredging, land use/agriculture and other infrastructure projects that occur in the free-slow sections and which increase riverbed erosion.

It should be highlighted from the beginning that the measures collected are in some cases part of more complex projects with multiple purposes and goals, among which there are measures in relation with the improvement of sediment regime. The following section aims to synthesise these measures (called "generic measures") together with those, which directly address the sediment regime.

The generic measures have been grouped in relation with their main effect in terms of morphological parameters (i.e. change of sediment regime bed resistance, energy slope, riverbed shear stress). Based on the data collected in the Factsheets, the list below indicates which generic measure impacts which parameter the most. This does not exclude the complementary effect of a certain measure on the other parameters (Figures 4 and 5).

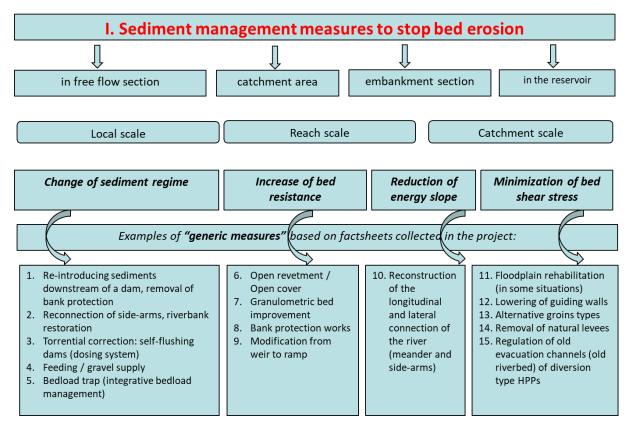


Figure 4: Sediment management "generic measures" to stop bed erosion (details are included in Table 1 -Section I and Annex 2: Catalogue of measures)

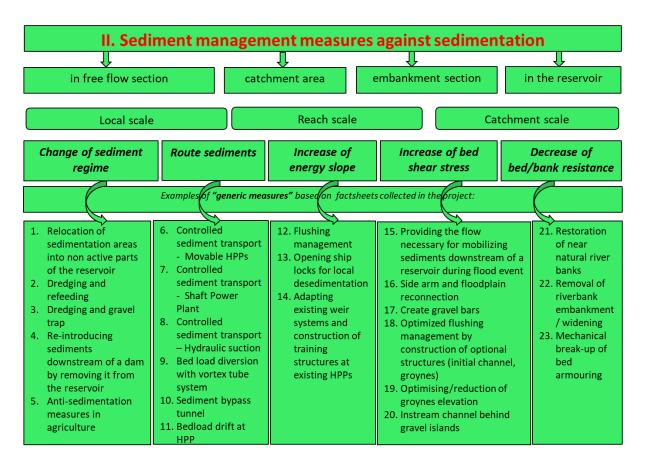


Figure 5: Sediment management "generic measures" against sedimentation (details are included in Table 1 -Section II and Annex 2: Catalogue of measures)

Table 1 gives an **overview** of generic measure types that were collected by our project partners. **All collected measures** are listed in Annex 2: Catalogue of measures; furthermore, **the details for each measure** are included in Annexes 3a and 3b: Factsheets regarding sediment measures to stop bed erosion and against sedimentation.

 Table 1: Overview of sediment management "generic measures" to stop bed erosion (Section I) and against sedimentation (Section II)

	Section I: Se	diment management measures to s	top bed ero	sion
"Generic Measure" Type	Morphologic parameters category improved	Main objectives and effects on ecological and hydromorphological parameters	Location of effect	Example(s) of measure(s) from Factsheets collected ^{*)}
 Re- introducing sediments downstream of a dam, removal of bank protection 	Change of sediment regime	Re-introducing sediments downstream of dam/weir to ensure/restore the longitudinal continuity of sediments, to reduce erosion downstream of the dam or weir to stabilise the riverbed and groundwater level, to improve the connection with side arms and floodplains, and to improve the habitat diversity.	reservoir; main channel	E_FF_H_T_P02; E_FF_FP_T_GP05; E_FF_FP/N_D_P21 E_R_H_T_GP24; E_R_H_T_GP25; E_R_W_T_P26
2. Re- connection of side-arm system, riverbank restoration	Change of sediment regime Minimization of bed shear stress	The reconnection of the side-arm primarily leads to improved ecological conditions in these river systems. This measure creates new aquatic habitats and refugial areas, where organisms are protected against wave influences. Due to the permanent connection to the main channel, the water level, flow velocity, shear stress and transport capacity are increased. Morphodynamic processes are enhanced both in the side-arm and in the main channel, due to river bank restoration. This effect the sediment balance in the main channel by causing higher sediment input from the side-arm and the river banks. Furthermore, flood retention is increased, resulting in lower water levels in the main channel at high flows. Primarily benefits ecology and in a lesser degree sediment balance and flood protection.	river bank	E_R_N/H_D_P28; E_FF_FP/N_D_GP15; E_FF_FP/N_D_GP18; E_C_N_D_GP31;
3. Torrential correction: self-flushing dams (dosing system)	Change of sediment regime	These works are reactivating bedload transport, reducing the removal of bedload at the barrier/dam. Also, improves habitats.	main channel	E_FF_FP_T_P10

4. Feeding /	Change of	Feeding / gravel supply helps to	main	E_FF_H_D_GP01
gravel supply	sediment	stabilize the bed level, reduces	channel	
	regime	erosion and ensures sediment		
		supply / continuity.		
5. Bedload	Change of	The use of bed load traps as part	main	E_FF_N_D_GP13
trap	sediment	of an integrative bed load	channel	
(integrative	regime	management helps to maintain		
bedload		the fairway depth in the		
management)		navigation channel by dynamically		
		stabilizing the riverbed; refeeding		
		the dredged sediments in the		
		upstream parts reduces the		
		ongoing riverbed incision. This		
		makes only sense if there is a		
		reservoir downstream, otherwise		
		the downstream erosion will be		
		increasing.		
6. Open	Increase of	Open cover (or revetment): large	main	E_FF_FP_T_GP07
revetment /	bed	stones, which are bigger than the	channel	
Open cover	resistance	existing bed material, are placed		
		onto the riverbed, covering about		
		half of the area. The stones		
		increase the resistance for the		
		water flow and protect the finer,		
		natural bed material in their		
		shelter zones. Acting on local scale		
		and long term, effects are in		
		improvement of ecology in the		
		river and bed stabilisation.		
7. Granulo-	Increase of	Granulometric bed improvement	main	E_FF_N/H_D_GP22;
metric bed	bed	sustains riverbed stabilization	channel	E_FF_N/H_D_GP23;
improve-	resistance	(stop riverbed erosion), reduces		E_R_N/H_D_GP27
ment		maintenance for less ford		
		dredging, increases low water		
		level and a dynamic equilibrium.		
8. Bank	Increase of	Construction and reconstruction	river bank	E_FF_FP_D_GP04;
protection	bed	of hydraulic regulation and		E_FF_FP_T_GP09;
works	resistance	protection structures will improve		E_FF_N_D_GP14
		flood protection and stabilization		
		of the flow and riverbanks		
9. Modifi-	Increase of	The weirs were usually built to	main	E_FF_FP_T_GP08
cation from	bed	slow down velocities and prevent	channel	
weir to ramp	resistance	bed erosion. However, weirs		
		hindered upstream fish migration		
		and downstream sediment		
		continuity. Therefore, the weirs		
		can be removed and replaced by a		
		ramp.		

10. Recon-	Reduction of	Side-arms shape the landscape	floodplain	E_FF_FP/N_D_GP16;
struction of	energy slope	through erosion and sedimen-		E_FF_FP/N_D_GP17;
the		tation. Measure will ensure		E_E_H/FP_T_GP33
longitudinal	Reduced	permanent connection of the		
and lateral	shear stress	side-arm system (at low flow), will		
connection of	in main	improve the ecological conditions		
the river	channel	(esp. at the river banks and side		
(meander and		arms), having effect on sediment		
side-arms)		budget in the side-arm system.		
		Also, will offer protection against		
		wave influence.		
11. Floodplain	Minimization	Increase the hydro-morphological	floodplain,	E_FF_FP_D_GP03;
rehabilitation	of bed shear	dynamics of the river, which	main	E_FF_FP_T_GP06;
(in some	stress	stimulate the movement of bed	channel	E_FF_FP/N_D_GP19;
situations)		load and decrease the deepening		E_C_FP_T_GP30;
		of the riverbed.		E_C_A_T_P32
12. Lowering	Minimization	Lowering of the guide wall leads	main	E_FF_N_D_GP12
of guiding	of bed shear	to the reduction of the incision of	channel	
walls	stress	the riverbed (reduced erosion).		
13.	Minimization	Alternative groyne types help to	main	E_FF_N_D_GP11
Alternative	of bed shear	reduce incision in the riverbed	channel	
groyne types	stress	(reduced erosion), to reduce		
0 / //		groyne field effects (less sedimen-		
		tation), to increase hydromorpho-		
		logical dynamics on the shores, to		
		restore river banks (side erosion		
		due to higher shear stress along		
		the river bank) and to improve the		
		ecological conditions (improving		
		the diversity of the aquatic habitat		
		through the near shore flow).		
14. Removal	Minimization	Removal of natural levees acts for	main	E FF FP/N D P20;
of natural	of bed shear	increase discharge capacity (flood	channel,	E_FF_A/H_D_GP34
levees	stress	protection), increase sediment	floodplain	
		input, reduce the incision of the		
		riverbed by reducing shear		
		stresses and the natural morpho-		
		logical development of the bank		
		zones (morphodynamics).		
		Removal of levees (revitalising the		
		floodplain) improves flood		
		protection by enabling the water		
		more width (during average flood		
		events) and reconnect of the		
		floodplain (i.e. enabling a natural		
		hydraulic floodplain dynamic)		
		supports the protection of the soft		
		wood forest and the remaining		
		native black poplar population		

15.	Minimization	Preventing the reservoirs from	reservoir	E_C_FP_T_GP29
Regulation of	of bed shear	getting filled up with gravel		
old	stress	downstream and improving the		
evacuation		sediment transport capacity. Also,		
channels (old		preventing the channel from		
riverbed) of		getting overgrown with		
diversion type		vegetation and raising the		
HPPs		groundwater level, increasing flow		
		capacity.		

*) The Factsheets are centralized in Annex 2: Catalogue of measures and detailed in Annex 3a: Factsheets regarding sediment management measures to stop bed erosion (see related codes).

S	ection II: Sedim	ent management measures ag	ainst sedimen	tation
	Morphologic	Main objectives and effects		Examples of
Measure Type	parameters	on ecological and	Location of	measures from
	category	hydromorphological	effect	Factsheets
	improved	parameters		collected ^{**)}
1. Relocation of	Change of	Re-introducing sediment	reservoir	S_R_FP/N_D_GP63
sedimentation	sediment	downstream of dam by		
areas into non	regime	removing it from reservoir		
active parts of		improve sediment continuity		
the reservoir		and contribute to riverbed		
		stability.		
2. Dredging and	Change of	Dredging to maintain	main	S_FF_N_D_GP40;
refeeding	sediment	navigation conditions and to	channel	S_FF_N_D_GP42;
	regime	maintain adequate flood		S_R_N_D_GP62;
		protection conditions.		S_E_H/FP_T_GP70;
		This measure is only		S_R_H/FP_D_GP65
		recommended if the dredged		
		material is reintroduced in		
		the river system (if possible		
		upstream).		
3. Dredging and	Change of	Dredging and gravel traps	main	S_R_H_T_GP52
gravel trap	sediment	help protect against flooding	channel	
	regime	by reducing high water levels		
		and ensuring sediment		
		transport by preventing		
		sediment from entering the		
		HPP chain. This measure is		
		only recommended if the		
		dredged material is		
		reintroduced in the river		
		system. Traps can be		
		implemented if there is a		
		further reservoir		
		downstream, otherwise		
		riverbed erosion might be		
		increased downstream.		

4. Reintro-	Chango	Po introducing codimont	roconvoir	
ducing sediment	Change sediment	Re-introducing sediment downstream of dam by	reservoir; main	S_R_H/FP_T_GP67
•				
downstream of	regime	removing it from reservoir	channel	
dam by		ensures sediment transport		
removing it from		continuity and riverbed		
reservoir		stability.	<u> </u>	
5. Anti-	Change of	Aims to create permanent	floodplain	S_C_A_T_GP71;
sedimentation	sediment	riparian buffer strips in		S_C_A_T_GP72;
measure in	regime	agricultural areas, they are		S_C_A_O_P73
agriculture		also called "green strips for		
		protect-tion of water bodies		
		and soil." The measure aims		
		to slow down runoff and		
		input von fine material and		
		nutrients and contribute to		
		flood protection		
6. Controlled	Route	The use of movable	main	S_FF_H_T_GP35
sediment trans-	sediments	hydropower plant can	channel	
port - Movable		support the sediment		
hydropower		continuity and migration of		
plant		fish.		
7. Controlled	Route	The innovative concept	main	S_FF_H_T_GP36
sediment	sediments	combines energy production,	channel	
transport		downstream fish migration		
Shaft-Hydro-		and sediment continuity due		
power Plant		to a movable sluice gate.		
8. Controlled	Route	Hydraulic suction reintro-	main	S_R_H_O_GP58
sediment	sediments	duces sediment downstream	channel	
transport		by removing it from reservoir		
Hydraulic		and thus ensures continuous		
suction		sediment transfer.		
9. Bed load	Route	Bed load diversion with a	main	S_FF_H_O_GP37
diversion with a	sediments	vortex tube system increases	channel	
vortex tube		the sediment transport		
system		continuity.		
10. Sediment	Route	The concept is to divert	main	S_R_H_O_GP59
Bypass Tunnels	sediments	inflowing sediment to the	channel	
(SBTs)		downstream river reach		
		without deposition in the		
		reservoir. This will highly		
		improve the river morpho-		
		dynamics (substrate and river		
		structure). SBTs prevent		
		reservoir sedimentation,		
		restore the sediment		
		continuity and enhance the		
		quality and quantity of the		
		affected benthic habitats		
		(downstream).		
	1			1

11. Bedload drift	Route	The bedload drift at HPP	main	S_R_H_T_GP54
at HPP	sediments	helps stabilize the bed / the roughness of the raised bed and improve the habitat (grain sizes are transported	channel	5_1 <u>_</u> 1_1_0F54
		from the middle to the		
	1	course).		
12. Flushing management	Increase the energy slope	Flushing management improves continuity (reducing sedimentation in the reservoir and erosion in the downstream reach), increases flood protection by restored reservoir capacity, prevents clogging and supports the restoration of spawning habitats. In case of flood protection, the use of flushing management reduces high water levels.	reservoir	S_R_H_T_GP51; S_R_H_T_GP57; S_R_H_D_P61; S_R_H/FP_D_GP69
13. Opening of ship locks for local desedimentation	Increase of energy slope	Opening of ship locks for local desedimentation improve continuity sediment transport (reducing sedimentation in the reservoir and erosion in the downstream reach).	reservoir	S_R_H_D_P60
14. Adapting the existing weir system and construction of training structures at the HPP	the energy slope	Adaptation of the existing weir system and the construction of training structures to HPP leads to flood protection by regulating flow /discharge and continuity of sediments by enhancing the bedload transport through HPP.	main channel	S_R_H/FP_T_GP66
15. Providing the flow necessary for mobilizing sediments downstream of a reservoir during flood event	Increase of bed share stress	According to the Weir Operating Regulations, segment gates must be opened in case of a flood event. These regulations contain specifics for the water level lowering at the HPP, as soon as the upstream regulation water level rises above a defined limit value. Opening the weir fields leads to increased shear stresses	reservoir; main channel	S_R_H_T_GP55; S_R_H_T_GP56; S_FF_FP_T_P39; (S_R_H_D_P61)

r	ſ			
		and flow velocities in the		
		reservoir. As a result,		
		sediments are remobilized		
		and transported out of the		
		reservoir. Continuity is		
		enhanced, leading to an		
		improved sediment balance		
		in the downstream reach.		
		Benefits for sediment regime		
		and flood protection.		
		By the remobilization of		
		deposited sediments in the		
		reservoir, the continuity of		
		suspended sediments is		
		improved.		
16. Side-arm and	Increase Bed	Side-arm and floodplain re-	floodplain;	S FF H/FP D P48
floodplain re-	shear stress	connection enhance stream	river bank	
connection	in the	habitat, re-establish flood		
	floodplain	and groundwater dynamics		
	and decrease	and improve longitudinal		
	bed shear	connectivity via fish pass		
	stress in the	(stream). This measure can		
	main channel	increase the erosion capacity		
		in the floodplain, thus reduce		
		the sedimentation.		
17. Create gravel	Increase of	Constructed for protection of	reservoir	S_R_H/FP_D_GP64
bars	bed share	sediment biotope within the	reservoir	5_N_N/N_D_0104
5415	stress	reservoir. The gravel bars		
	50,655	offer succession areas for		
		different plants in the		
		wetlands. Thus, a significant		
		ecological upgrading of the		
		macrozoobenthos can be		
		achieved. New refugee's		
		habitats are created where		
		fish are protected against		
		vessel-induced waves.		
18. Optimized	Increase of	Flushing efficiency can be	reservoir	S_R_H_T_GP53
flushing	bed shear	increased by the construction	10301001	5_1/_1_0/05
management by	stress	of initial channels and		
construction of	311 533	groynes. These structures,		
optional		situated at the head of the		
		reservoir and enhance the		
structures (initial				
channel,		sediment transport through the reservoir and reduce the		
groynes)				
		sediment deposition at		
		higher discharges and higher		
		sediment inflow rates. An		
		initial channel can be located		

		establishing conditions of		
		hydrographic networks for		
river banks	resistance	measures on the existing		S_R_H_D_GP50;
of near natural	bed/bank	hydrotechnical works and	floodplain	S_R_H_D_GP49;
21. Restoration	Decrease of	Implementation of	river bank;	S_FF_D_T_GP47;
		dynamics in the banks.		
		hydromorphological		
		increased		
		sedimentation) and the		
		groynes field (less		
		reducing the effects of the		
		of waves induced by ships)		
		protection against the effects		
		shores, refugial habitats for		
		through the stream near the		
islands		ecological conditions (diversity of aquatic habitat		
behind gravel	stress	the improvement of	river bank	
side channel	bed shear	behind gravel islands leads to	channel;	S_FF_D_D_GP44
20. In-stream	Increase of	In-stream side channel	main	S_FF_N_D_GP41;
		area		
elevation		field and near bank/riparian		
groynes	stress	and increase in the groynes		
reduction of	bed shear	reduced in the main channel	channel	S_FF_N_D_GP43
19. Optimising	Increase of	The bed share stress is	main	S_FF_FP_D_GP38;
		deposit.		
		restoration of the habitats of		
		of the colonization and the		
		reservoir and the prevention		
		restored capacity of the		
		against floods by the		
		increasing the protection		
		downstream erosion, by		
		reservoirs and the		
		sedimentation in the		
		continuity by reducing the		
		improvement of the		
		management leads to the		
		The optimized flushing		
		channel.		
		but also lateral to the initial		
		eroded not only retrogressive		
		deposited sediments are		
		clogged riverbeds occur. The		
		cohesive sediments or		
		-		
		J. J		
		near the weir or at the head of the reservoir. The flushing channel may enhance the sediment transport if		

		previous river banks and even wetlands, as well as previous natural conditions important for biodiversity of the areas, conservation of floodplains and water habitat conditions.		
22. Removal of riverbank embankments / widening	Decrease of bed/bank resistance	Contributing to restore the near natural river banks and stabilisation of riverbed and previous natural conditions.	river bank, embankment (dikes) sector	S_E_H_T_P68
23. Mechanical break-up of bed armouring	Decrease of bed/bank resistance	The mechanical break-up of bed armouring maintains the continuity of the sediments, diverse habitats with adequate levels of oxygen and ensuring capacity of cross-section in case of flooding.	main channel	S_FF_D_T_GP45; S_FF_D_T_GP46

^{**)} The Factsheets are centralized in Annex 2: Catalogue of measures and detailed in Annex 3b: Factsheets regarding sediment management measures against sedimentation (see related codes).

Considering the location, the assessment of sediment good practice and potential measures indicates that most of the measures are located in the free flow section, especially on the main channel and floodplain area and addresses both anti-erosion and anti-sedimentation. Measures undertaken at the reservoirs are also present in a relatively important number mostly related to optimising the river dam or weir hydraulic equipment, but also measures related to an improvement of the morphological conditions at the riverbed and the river bank.

Considering the temporal and spatial scale, most of the collected measures with long term effect are those related to reduction of erosion which mostly has a local effect. Measures with a medium or short-term effect located on regional or river basin scale have been also collected.

2 Catalogue of sediment management measures

2.1 Catalogue structure

2.1.1 Background and EU / ICPDR context

Examples of sediment improvement related measures have been assessed in the frame of different actions either we consider the EU or more specific Danube basin wide context. The Common Implementation Strategy, EU Projects, but also River Basin Management Plans coordinated by ICPDR and background technical documents make reference to measures for improvement the sediment regime.

• EU Context

In the European Union, water management is regulated via Water Framework Directive (WFD, formally Directive 2000/60/EC) that was adopted in October 2000. Adjacent documents regulate the implementation of the WFD, e.g. the EU CIS Guidance Document No. 4. Thus, the EU CIS Guidance Document No. 4 - *Steps for defining and assessing ecological potential for improving comparability of Heavily Modified Water Bodies* was updated in 2019, emphasising the importance of mitigation measures for achieving and definition of maximum (MEP) and Good Ecological Potential (GEP)².

Regarding the identification of mitigation measures, the need was expressed for a "best environmental practices" guidance for different types of modifications related to different users. To support this, a library of good practice mitigation measures for HMWB has been set up in the updating of EU CIS Guidance Document No. 4 - *Steps for defining and assessing ecological potential for improving comparability of Heavily Modified Water Bodies* in 2019. The library describes the typical implications of different types of physical modification and suggests relevance of mitigation measures to address typical effects in each water category (rivers, lakes/reservoirs, transitional/coastal waters). The library includes key 145 groups of mitigation measures, which are expected to be considered for ecological 146 improvements in order to address certain modifications (CIS Guidance 4).

The impact on sediment dynamics caused by hydrological or morphological alteration makes sediment management to one of the key measures to reach the Good Ecological Potential³.

² <u>https://circabc.europa.eu/sd/a/f9b057f4-4a91-46a3-b69a-e23b4cada8ef/Guidance%20No%204%20-%20heavily%20modified%20water%20bodies%20-%20HMWB%20(WG%202.2).pdf</u>

³ <u>https://circabc.europa.eu/faces/jsp/extension/wai/navigation/container.jsp</u>

• Project REFORM

Measures for improving the sediment regime were also addressed in the frame of the REFORM project (*REstoring rivers FOR effective catchment Management*). The project underlines the key role of bedload transport and sediment dynamics in forming fluvial habitats and includes sediment flow quantity improvement in the frame of factsheets for collecting different restoration measures⁴.

• Natural Water Retention Measures

The Natural Water Retention Measure (NWRM) platform includes a catalogue of measures and a catalogue of case studies. The catalogue of measures of the NWRM is sorted by sector. It has been developed in the NWRM project, represents a comprehensive but non prescriptive wide range of measures, and there may be other or similar measures that could also be classified as NWRM. Sediment related measures could be found under hydromorphology.

• ICPDR context

Having in view the provisions of the Danube River Protection Convention, the major legal instrument for cooperation and transboundary water management in the Danube River Basin. ICPDR is the platform for the implementation of all transboundary aspects of the EU Water Framework Directive (WFD). Danube River Basin Management Plan as the key planning instrument in the frame of WFD implementation include measures adressed to hydromorphological alterations. Restoring/improving the longitudinal connectivity are part of these measures.

Hereby the Danube Sediment Project will contribute the work for the successful implementation of the EU WFD. The Catalogue of good practices and potential measures will come to complete the Joint Programme of Measures in the DRBMP Update 2027 by providing relevant examoples of improving the sediment regime as base for identification future actions.

The DanubeSediment Catalogue (Annex 2) on sediment management measures proposes a set of more detailed examples of improving the sediment regime, representing a comprehensive but non prescriptive wide range of measures.

2.1.2 How and when to use the Catalogue of Good Practices

To ensure a sustainable and equitable use of waters in the Danube River Basin, further information exchange is key to enable the Danubian countries to learn from each other's good practices and experiences in the field of sediment management.

⁴ <u>https://reformrivers.eu/start</u>

DanubeSediment: Sediment Management Measures for the Danube www.interreg-danube.eu/danubesediment

The further river basin management planning policy should take into account all relevant factors: water, biodiversity but also the needs for navigation, hydropower or flood protection.

The "Catalogue of good practices for sediment management" presents selected examples of good practices and provide examples from Danube River Basin, but also a few from outside of DRB (details are included in Annex 2: Catalogue of measures).

The Catalogue will:

- support Danube countries in understanding the needs and requirements for improving the sediment regime measures, having in the view it's continuously alteration;
- suggest methods and approaches that are available for improving sediment regime;
- provide examples of improving sediment regime in Danube River Basin on Danube River, Major selected tributaries (Isar, Inn, Salzach Wertach, Saalach, Drava, Sava, Mur, Iskar, Yantra, Iskar), but also outside of Danube River Basin on rivers Rhein Limmat, Albula.

The catalogue is neither prescriptive nor mandatory and presents only "representative examples" of improving the sediment regime in the Danube River Basin selected on the basis of key elements set under (see sub-chapter 1.1.2).

Furthermore, in Figure 6, based on details included in all factsheets collected, is presented the distribution of drivers or combinations of drivers to whom the measures collected are addressed.

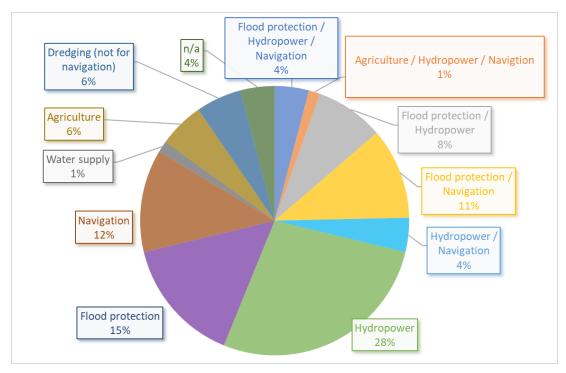


Figure 6: Drivers or combinations of drivers to whom the measures collected are addressed

The main users of the Catalogue will be:

- Danube Basin Countries' responsible authorities in charge of water resource and flood risk management;
- main water users in the frame of their environmental policy;
- research community.

The information on sediment management measures to improve the sediment regime along the Danube and tributaries could also be of interest for the following readers:

- private sector, in particular water resource and flood risk management experts and advisors;
- utility networks and critical infrastructure operators;
- insurance and real estate business sectors;
- other organisations/institutions from private or public sectors.

Annex 2: Catalogue of measures includes the details for all 73 measures collected, organised in two sections, including synthetic data about location, objectives, spatial-temporal scale, effect in morphological and ecological domains, etc.:

Section I: Sediment management measures to stop bed erosion (includes 34 factsheets coded, details are in Annex 3a – Factsheets regarding sediment management measures to stop bed erosion);

Section II: Sediment management measures against sedimentation (includes 39 factsheets coded, details are in Annex 3b – Factsheets regarding sediment management measures against sedimentation).

Here is presented the algorithm for code (Table 2) used for coding and organizing the measures from the Catalogue:

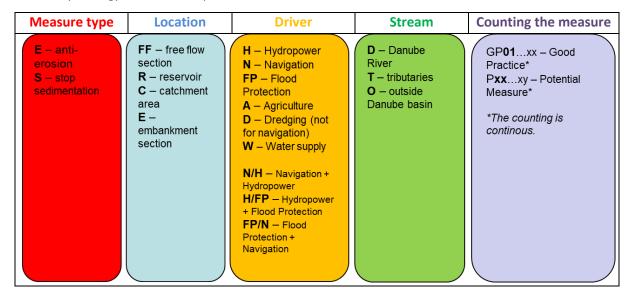


 Table 2: Symbology used for description of the code

Example 1: code E-FF-N-D-GP03, it means an anti-erosional measure (E), located on free flow (FF), driver addressed on Navigation (N), located on Danube River (D) and considered as good practice (GP), being the 3rd in the centralized Catalogue (03).

<u>Example 2</u>: code **S-R-H_N-D-GP02**, it means an anti-sedimentation measure (S), located on reservoir (R), combination of driver addressed on are Hydropower and Navigation (H_N), located on Danube River (D) and considered as good practice (GP), being the 2nd in the centralized Catalogue (02).

<u>Example 3:</u> code **S-C-A-O-P73**, it means an anti-sedimentation measure (S), located in catchment area (C), driver addressed on Agriculture (A), located on Outside Danube River (O) and considered as potential measure (P), being the 73th in the centralized Catalogue (73).

All factsheets are coded, organized and included in Annex 3a: Factsheets regarding sediment management measures to stop bed erosion (33 factsheets) and Annex 3b: Factsheets regarding sediment management measures against sedimentation (40 factsheets).

2.2 Cost Effectiveness Analysis (CEA) in sediment measures context

2.2.1 Introduction

The basic concept of the cost-effectiveness analysis is in itself straight forward, i.e. identifying the measures for reaching a given objective (Improving the sediment transport in our case) in the most cost-effective way. In other terms, Cost Effectiveness Analysis (CEA) is an appraisal technique that provides a ranking of different specific measures on the basis of their costs and effectiveness, where the most cost effective has the highest ranking. In this way the CEA will provide additional information to aid decision-makers in the process of selecting and implementing specific measures.

Considering the present inventory of sediment management measures (good practices and potential measures), the use of a classical ranking method based on individual scores could mislead the policy makers in the decisions on adopting and implementing a certain measure. This is mainly due to level of details for the components of cost effectiveness analysis (e.g. quantifying the effects, accurate assessment of the costs.

In conclusion, this section of the report just proposes to briefly realize an overview on the main elements of the cost effectiveness analysis, their qualitative way of assessment and providing few relevant examples from the fact sheets.

➢ Key Elements of CEA

Three main steps comprise a cost effectiveness analysis:

- Identification as far as possible of an extensive set of measures;
- Assessment of the effects undertaken the goal of measure;
- Assessment of costs.
- Identification as far as possible of an extensive set of measures

The inventory of measures performed in the frame of **DanubeSediment** project provides a wide range of specific sediment management measures either technical (engineering) measures, but also non-technical, i.e. of administrative, institutional or legislative nature. As previously described these measures have been classified as good practices and potential measures for improving the sediment regime.

2.2.2 Assessment of the effects

In general, the effects should be related to the aim of the measure, respectively to the improvement of sediment transport. In fact, a complex set of parameters compose this effect, which are described in the previous sections: hydraulic, hydrological, morphological and ecological.

As part of the factsheets for collecting the measures, the effect has been addressed in a qualitative manner by ranking it for each measure in: High, Medium or Low. Hence, for each individual measure the effect is evaluated for each individual parameter, which define the sediment processes, i.e. hydrodynamics, sediment dynamics, morphodynamics and ecology.

In Tables 3 and 4 there are two examples which illustrate the qualitative assessment of the effect.

	Parameter	Short description	Effect*
	water level reduced at bankfull discharge -> earlier		Н
	water iever	floodplain inundation	
Hydrodynamics	flow velocity	reduced at bankfull discharge due to decreased	Н
Hydrodynamics:		hydraulic radius	
	shear stress reduced at bankfull discharge due to decreased		Н
	Silear Stress	hydraulic radius	
	transport	reduced at bankfull discharge due to decreased	М
Sediment dynamics:	capacity	hydraulic radius	101
	continuity	continuity -	
Morphodynamics:	substrate	increased morphodynamics at the banks	М
Ecology:	habitat diversity	increased habitat diversity at the banks	М

 Table 3: Anti-erosion measure example: Removal of natural levees

*H – high; M – medium.

	Parameter	Effect*			
		Upstream		Downstream	
Hydro-	water level	decreased	М	increased	L
dynamics:	flow velocity	increased	Н	decreased	L
	shear stress	increased	Н	decreased	L
Sediment	transport capacity	increased	L	increased	L
dynamics:	continuity	increased	М	increased	L
Morpho-	substrate	increased	М	increased	L
dynamics:		morphodynamics		morphodynamics	
		restoring spawning			
Ecology:	habitat diversity	habitats by preventing	L	increased	L
		colmation			

Table 4: Measure against sedimentation example: Opening of ship locks for local desedimentation

*H – high; M – medium; L – low.

Assessment of the costs

In the frame of CEA, the costs should be addressed to financial costs. In economic terms, financial costs represent the costs of providing and administering a service. They include beside the capital costs all operation and maintenance costs. It is estimated that a monetary assessment of financial costs of the measures will be in most cases difficult. Cost elements (maintenance, construction) are included in the factsheets, and in cases where cost information could be obtained, they were provided, for example for measures which were already implemented.

For the rest, a qualitative approach has been used that assesses the cost effectiveness in the same way as the assessment of the effects (High, Medium, Low). This qualitative approach admits a certain level of uncertainty, since every implemented measure is case-specific in terms of costs. This is the reason for not ranking the measures in terms of a classical CEA.

A detailed assessment of the costs could be further performed based on proper feasibility studies. This would require a larger pool of staff and sufficient time to collect the necessary information on the costs associated with each measure.

Conclusions

The morphological processes erosion and sedimentation, which result from the alteration of the sediment regime, set the key elements of sediment measures and the two major categories: measures against sedimentation and measures to stop bed erosion. Thus, morphological parameters, on which the measures act, are implicitly interlinked with improving the sediment regime, be it erosion or sedimentation (changing in sediment regime; increase/decrease of bed resistance; reduction/increase the energy slope and minimization/increase of bed shear stress).

The interruption of the longitudinal and lateral continuity by dams and weirs, flood protection and navigation embankment and regulation works as well as reduced sediment discharge directly influence the sediment deficit, which leads to riverbed erosion, especially downstream of the barriers. On the other hand, sedimentation is also significant in several sections along the Danube River and its major tributaries. Sedimentation in reservoirs is probably the most pressing concern facing river managers in present, and cause both upstream and downstream impacts. The sedimentation of water stretches can also make them unsuitable for navigation without regular dredging work.

The inventory of measures performed in the frame of the DanubeSediment project provides a wide range of specific sediment management measures both technical (engineering) and non-technical, i.e. of administrative, institutional or legislative nature.

In summary, we collected over 70 individual measures to improve the sediment regime from throughout the Danube River Basin and beyond. The examples we collected are in some cases part of more complex projects with multiple purposes and goals, among which there are measures in relation with the improvement of sediment regime. After comparing the examples, we condensed them into 38 generic measure types (15 regarding stop bed erosion and 23 against sedimentation, see Table 1).

The collection of measures indicates that there are different technical and non-technical solutions that can be adapted to suit to the conditions of a certain area. We recommend working with the inventory as follows: When choosing a measure that can solve a certain sediment problem, one needs to analyse the site-specific conditions and the effects that the measure would have at that exact location. The inventory shows that many measures are still in the phase of being developed (i.e. potential measures) and each measure needs to be adapted to the exact location and river conditions. At this point, all relevant stakeholders should be involved in the process, regarding their expertise and specific interests. Their cooperation is crucial to determine the feasibility of a measure. This can be done with CEA, physical and numerical modelling etc. You can find a list of experts working in river and sediment modelling in the Danube Region in the <u>River Model Network</u> collected by the DanubeSediment project).

In general, this report and the adjacent catalogue (Annex 2) and factsheets (Annexes 3a/b) aim to reach decision-makers and practitioners working in sediment management. In order to improve sediment management, it is essential that all Danubian countries work together on finding common solutions that will benefit both humans and nature in the Danube River Basin.

Further recommendations for transnational sediment management of the Danube and the main results of our DanubeSediment project can be found in the two main publications, the "Sediment Manual for Stakeholders" and the "Danube Sediment Management Guidance".

List of Abbreviations

Art. - article

- APSFR Areas with Potential Significant Flood Risk
- AT Austria
- BG Bulgaria

BME - Budapest University of Technology and Economics

BOKU - University of Natural Resources and Life Science

BQEs - Biological Quality Elements

- CEA Cost Effectiveness Analysis
- CEN European Committee for Standardization
- CIS Common Implementation Strategy
- DBA Danube Basin Analysis
- DE Germany
- DPSIR Drivers-Pressures-State-Impact-Response

DRB - Danube River Basin

DRBD - Danube River Basin District

DRBMP - Danube River Basin District Management Plan

DRPC - Danube River Protection Convention

EAEMDR - Executive Agency "Exploration and Maintenance of the Danube River"

EEA - European Environment Agency

ERDF - European Regional Development Fund

EQS - Environmental Quality Standard

EU - European Union

EUSDR - EU Strategy for the Danube Region

FD - EU Floods Directive 2007/60/EC

FP EG - Flood Protection Experts Group

FRMP - Flood Risk Management Plan

- **GES Good Ecological Status**
- **GDP** Gross Domestic Product
- GLC Global Land Cover
- HPP Hydroelectric power plant
- HR Croatia

HRVODE - Hrvatske vode (Croatian Waters)

HU - Hungary

HYMO EG - Hydromophology Experts Group

IAD - International Association for Danube Research

ICPDR - International Commission for the Protection of the Danube River

IPA - Instrument for Pre-Accession Assistance

IPCC SRES - Intergovernamental Panel on Climate Change - Special Report on Emissions Scenarios

IzVRS - Institute for water of the Republic of Slovenia

- JCI Jaroslav Černi Institute for the Development of Water Resources
- JDS Joint Danube Survey
- JRC Joint Research Centre
- LfU Bavarian Environment Agency
- NARW National Administration "Romanian Waters"
- NIHWM National Institute of Hydrology and Water Management
- NIMH-BAS National Institute of Meteorology and Hydrology Bulgarian Academy of Sciences
- Non-EU non-European Union Member State
- NUV 2 RBMP 2nd River Basin Management Plan in Slovenia
- NWRM Natural Water Retention Measure
- OECD Organisation for Economic Co-operation and Development
- PA Priority Area
- PPs Project Partners
- PSR Pressure-State-Response
- QEs Quality Elements
- REFORM Restoring rivers for effective catchment Management project
- RBM River Basin Management
- **RBMP** River Basin Management Plan
- RBSP River Basin-Specific Pollutants
- Rkm River kilometre
- RO Romania
- RS Republic of Serbia
- SAMS Sustainable Asset Management System
- SEPA Scotish Environmental Protection Agency
- SK Slovak Republic
- SI Slovenia
- SWMIs Significant Water Management Issues
- TEN-T Trans-European Network Transport
- TUM Technical University of Munich, Hydraulic Research and Water Resources Management
- VUVH Water Research Institute (Slovakia)
- WFD EU Water Framework Directive 2000/60/EC
- WP Work Package
- WPLs Work Package Leaders

References

(includes also sources from all Factsheets for measures collected)

- Schwarz, U.; Holubova, K.; Cuban, R.; Matok, P.; Busovsky. J. (2014). *Join Danube* Survey 3, 2014: Summary report on: Hydromorphology (p. 21). Retrieved July, 2018, from <u>http://www.danubesurvey.org/</u>
- European Commission, 2000: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy (EU Water Framework Directive - WFD), Official Journal 22nd December 2000 L 327/1, European Commission, Brussels.
- European Commission, 2003: CIS Guidance Document no 3, Analysis of Pressures and Impacts. Retrieved from <u>https://circabc.europa.eu/sd/a/7e01a7e0-9ccb-4f3d-8cec-aeef1335c2f7/Guidance%20No%203%20-%20pressures%20and%20impacts%20-</u>%20IMPRESS%20(WG%202.1).pdf
- European Commission, 2017: Autumn 2017 Economic Forecast. Retrieved from <u>https://ec.europa.eu/info/business-economy-euro/economic-performance-and-forecasts/economic-forecasts/autumn-2017-economic-forecast_en</u>
- European Committee for Standardization, 2013: Annual Report. Retrieved from https://www.cen.eu/news/brochures/brochures/AR2013_CEN_EN_final.pdf
- European Environment Agency (EEA), 1998: Guidelines for Data Collection and Processing - EU State of the Environment. Retrieved from <u>https://www.eea.europa.eu/publications/TEC26/download</u>
- European Environment Agency (EEA), 2000: The DPSIR assessment framework applied to soil erosion. Retrieved from <u>https://www.researchgate.net/figure/The-DPSIR-assessment-framework-applied-to-soil-erosion-modified-from-EEA-2000-and_fig2_235759239</u>
- European Standardization Database, 2004, EN 14614:2004: Water quality Guidance standard for assessing the hydromorphological features of rivers. Retrieved from <u>http://www.safrass.com/partners_area/BSI%20Hydromorphology.pdf</u>
- ICPDR, 2005: The Danube River Basin District Part A Basin-wide Overview (short: Danube Basin Analysis (WFD Roof report 2004), Document IC/084 Retrieved from <u>https://www.minzp.sk/files/oblasti/voda/ochrana-vod/3/12-</u> <u>COMPLETE+ROOF+REPORT+-+FINAL+DOCUMENT+-+MINIMUM.PDF</u>
- ICPDR, 2009: Danube River Basin District Management Plan, Part A Basin-wide overview, Document IC/151. Retrieved from <u>http://www.icpdr.org/main/activities-projects/danube-river-basin-management-plan-2009</u>
- ICPDR, 2018: DanubeGIS Data Policy Policy on data sharing and usage in the Danube River Basin GIS. Document number: IC128, Version: 2.2. Retrieved from <u>https://www.danubegis.org/data_privacy</u>

- ESRI, 1998: ESRI Shapefile Technical Description An ESRI White Paper. Retrieved from <u>https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf</u>
- Engineering in the Water Environment Good Practice Guide Intakes and outfalls. Retrieved from <u>https://www.sepa.org.uk/media/150984/wat_sg_28.pdf</u>

Websites sources extracted from all Factsheets for measures collected:

- https://www.verbund.com/de-at/blog/blog-artikel/2012/04/23/bagger-donau-schiff
- <u>http://www.viadonau.org/en/company/project-database/top-aktuell/integrated-</u> <u>river-engineering-project-catalogue-of-measures/</u>
- <u>https://www.wwa-</u>
 <u>in.bayern.de/fluesse_seen/massnahmen/mass05/doc/flyer_engl.pdf</u>
- <u>https://www.wwa-</u>
 <u>in.bayern.de/fluesse_seen/massnahmen/mass05/ablauf/index.htm</u>
- http://db-sediments.com/index.php/home.html
- <u>http://www.vaw.ethz.ch/en/research/hydraulic-engineering/completed-projects.html</u>
- <u>http://www.viadonau.org/en/company/project-database/top-aktuell/integrated-river-engineering-project-catalogue-of-measures/pilot-project-bad-deutsch-altenburg/</u>
- <u>https://izw.baw.de/publikationen/informationsgrafiken/0/BAW_Buhnenposter_web_300dpi.pdf</u>
- http://www.vodevojvodine.com/content/uploads/tinymcefiles/Dunav%202017.pdf