

D.3.1.1. Training material - geothermal resource management

February 2017

D.3.1.1. Training material Geothermal resource management

Compiled by: Annamária Nádor (MFGI)

Authors:

MFGI: Nóra Gál, Ágnes Gulyás, Tamás Kerékgyártó, Attila Kovács, Annamária Nádor, Ágnes

Rotár-Szalkai, Teodóra Szőcs, László Zilahi-Sebess

InnoGeo: Tamás Medgyes, János Szanyi

Mannvit: Lárus Hólm

GeoZS: Andrej Lapanje, Dušan Rajver, Nina Rman

HGI-CGS: Staša Borović, Željka Brkić, Ozren Larva, Tamara Marković, Nataša Pomper

MINGO & HROTE: Dubravka Brkić, Ivana Koletić

ZARA: Ivana Bobovečki, Nataša Hlaban, Filip Šoštarić

FZZG: Natalija Samardzic

GSRS: Boban Jolović

IGR: Radu Fărnoaga, Anca-Marina Vîjdea

Terratechnik: Stefan Olah

FMG. Dejan Milenic, Ana Vrajnes

DARLINGe project is co-funded by the European Regional Development Fund (1612249,99 €) and by the Instrument for Pre-Accession Assistance II (534646,6 €) under Grant Agreement no DTP1-099-3.2

Contents

Part I – Overview of geological, hydrogeological and geothermal conditions of the DARLINGe countries

- Hungary
- Slovenia
- Croatia
- Serbia
- Bosnia and Herzegovina
- Romania

Part II – Introduction to deep geothermal energy: play types, potential estimation methods, geothermal modelling, classification of resources/reserves

- Basic concepts of deep geothermal energy
- Geothermal Play Types
- Geothermal potential and estimation methods
- Geothermal processes a numerical approach for reservoir evaluation
- Classification of geothermal resources / reserves
- Methods to outline and characterize potential geothermal reservoirs at regional scales (Experiences from TRANSENERGY project)

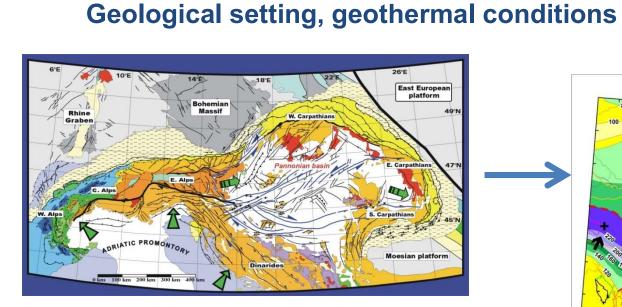
Contents

Part III – Utilization and management of hydrothermal resources

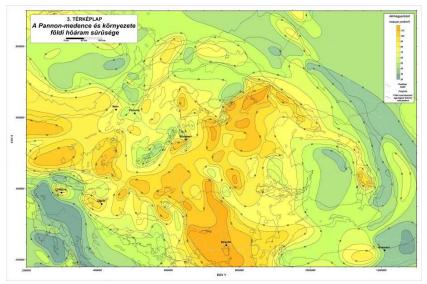
- Geothermal contexts of River Basin Management Plans and other (transboundary) groundwater management initiatives
- The benchmark system of the TRANSENERGY project ways forward in DARLINGe
- Some practical aspects and good practices of thermal water direct uses

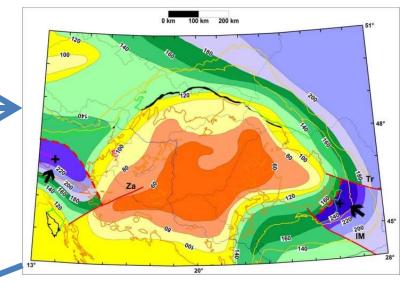
Part IV – Geo-techno-economic and environmental aspects of geothermal direct use projects

- Geological risk mitigation
- Experience from geothermal and hydrocarbon concessional works in Hungary
- THE UNFC-2009 classification scheme as a possible tool for complex project characterisation and ranking
- Economic considerations of geothermal projects
- Environmental aspects and social acceptance


Part V – Data integration and visualization

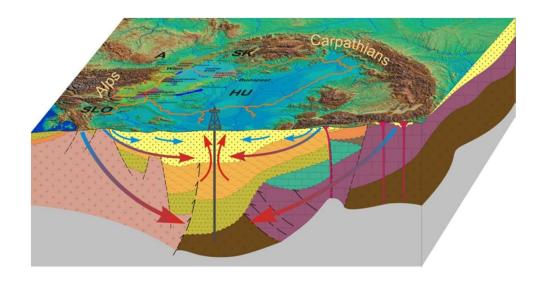
• Overview of existing web-based geothermal information systems


Part I – Overview of geological, hydrogeological and geothermal conditions of the DARLINGe countries


Hungary

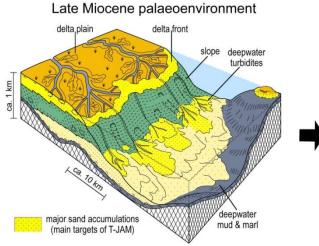
Basin formation: Early-Middle Miocene crustal extension

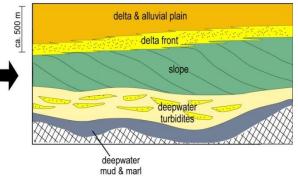
Danube Transnational Programme DARLINGE

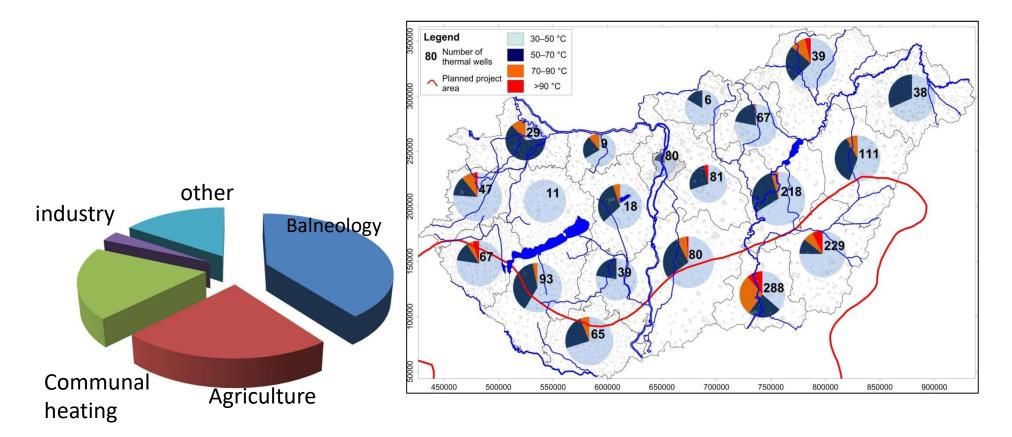


Streched (thinned lithosphere)

High heat flux (90-100 mW/m²) – continental average (60 mW/m²).


Geothermal gradient 45 °C/km (World average: 20-25 °C/km)


Geological setting, geothermal conditions



 2 major geothermal reservoirs
 Karstified fracturedweathered zones
 (Palaeozoic-Mesozoic basement carbonates):
 Multilayered porous sediments (Upper Miocene-Pliocene "Pannonian" basin fill sequence) : intergranular / porous reservoirs: best: delta (shelf) front sands

Red line: provisional contour of the DARLINGe area

Legend

Planned Project area

30-50 °C

50-70 °C

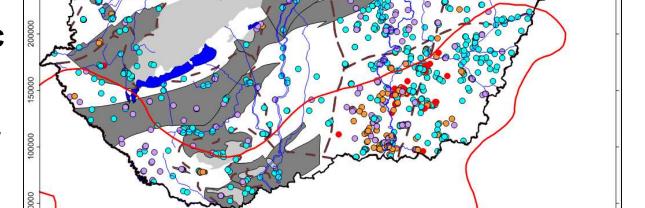
450000

500000

550000

600000

1 Porous them


70-90 °C

Agriculture: major sector for direct heat utilization (greenhouses, plastic tents)

Industrial purposes: few wells, typical outflow temperature is 40-50 °C

Balneological: ~255 wells, 40-50 °C outflow temperature

District heating: 21 towns in 2016 (thermal water heating cascade system

650000

Thermal Kars GWB

Karst GWB

Red line: provisional contour of the DARLINGe area

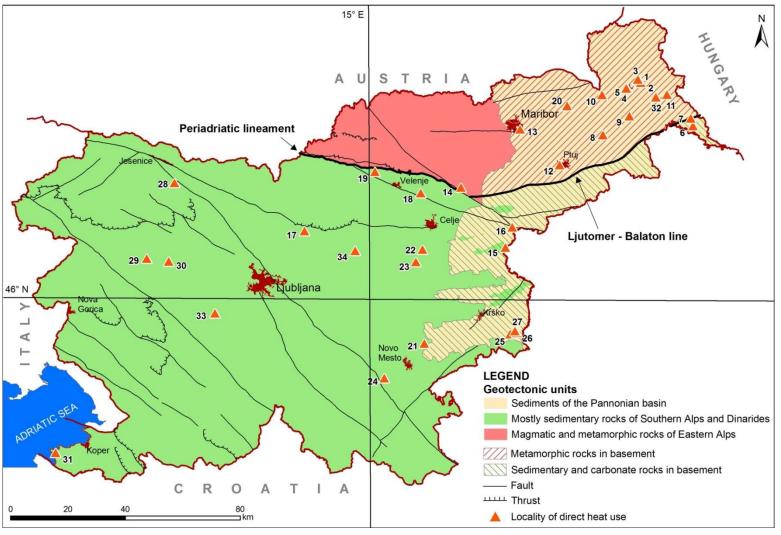
700000

750000

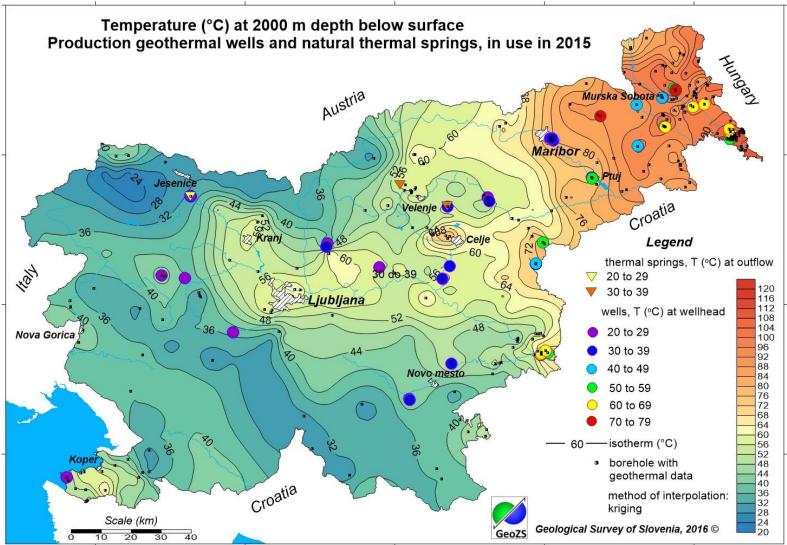
800000

850000

900000


Part I – Overview of geological, hydrogeological and geothermal conditions of the DARLINGe countries

Slovenia


Geological setting

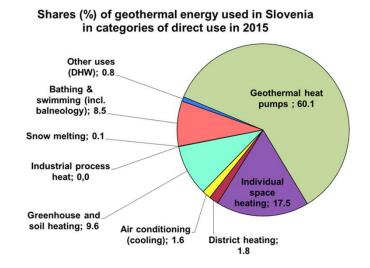
(Rajver et al., 2016).

Geothermal conditions

Geothermal conditions

Andrew Andrew <th>Useful (Economic) resources:</th> <th></th> <th></th>	Useful (Economic) resources:		
Automatic Argentine Argent	Identified		Undiscovered
regel and other in the second of the second	1.a	proven	2
Seine b Davie Ruše MARIBOR Ruše Marine So, volčina Trovska	1.b	probable	
Ruše 26 Vice Index Vis Vis Vis Vis Vice Vice Vice Vice Vice Vice Vice Vice	1.c	possible	
Sirretro Rediter Rado Chepto Manora Ser Carlo Patrice Potter Dongeline	Subeconomic resources:		
Kining Slovy Biscal Intrica Progensio Dutan Distan	3	Identified	
Malifaciti (Vinica Gradina Tolovo Prelog	4	Undiscovered	
Bot Sparse Danada Unitoria Danada Directoria Danada Directoria Zarovnice Directoria Zarovnice Directoria	4	Proven useful iden (1.a) lying over un subeconomic resour	discovered and/or

Geothermal resources of NE-Slovenia


(Rajver et al., 2016).

Direct use from thermal water at 34 localities; Installed capacity: 65.62 MW_{t} , Annual thermal energy used in 2015: 486 TJ (=11.61 ktoe)

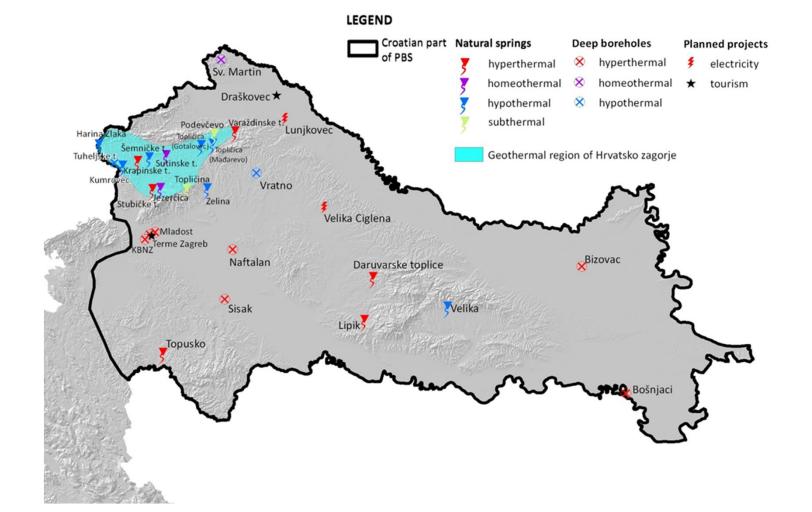
ca 9350 geothermal (ground-source) heat pump units (GSHP), both watersource (W) and closed-loop ground-coupled (H and V) systems; their total capacity: 136.64 MW_t Annual thermal energy used in 2015: 732.09 TJ (=17.49 ktoe) of thermal energy.

Total: from capacity of 202.25 MW_t the annual geothermal energy used in 2015: 1218.09 TJ/yr (=29.094 ktoe=338.36 GWh), equals 0.43% of gross domestic energy use at level of primary energy supply (282.2 PJ in 2014).

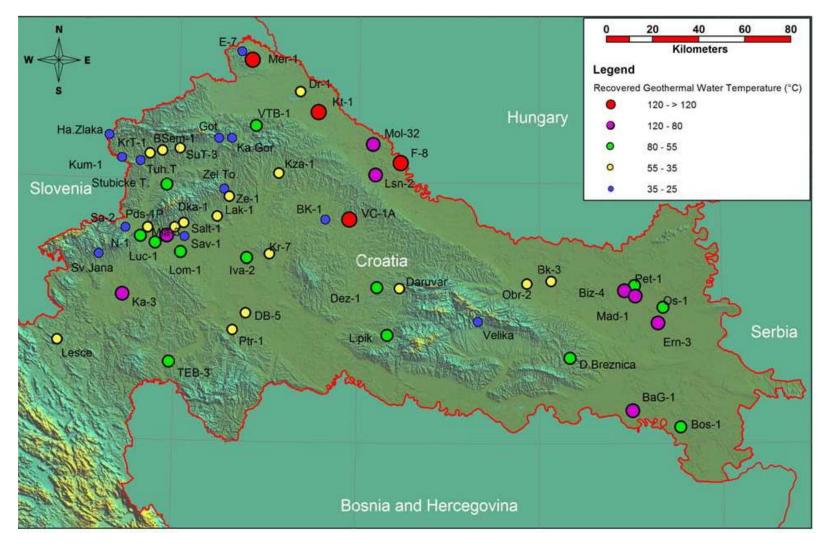
Part I – Overview of geological, hydrogeological and geothermal conditions of the DARLINGe countries

Croatia

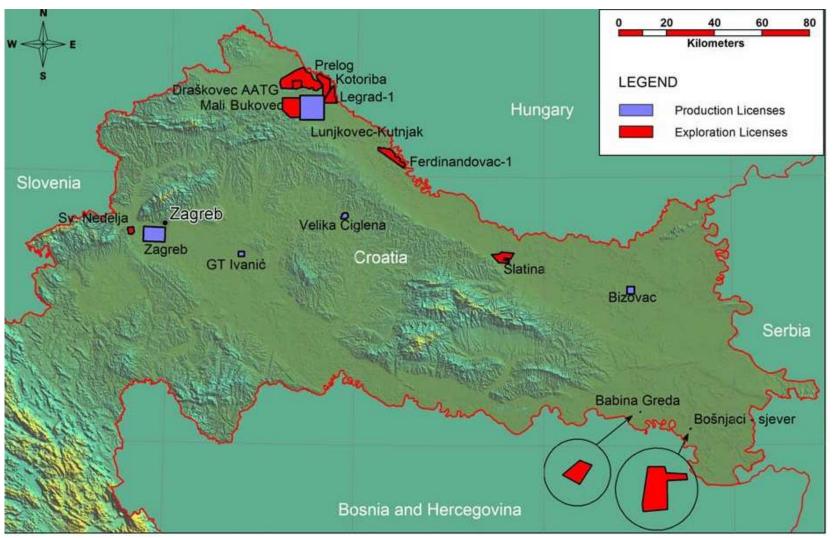
Geological setting


Pannonian part -

- sedimentary basin conditions (Mura, Drava, Sava and Slavonija-Srijem depressions)
- favorable geothermal conditions -average heat flow is 76 mW/m2, and geothermal gradient 0,049 °C/m
- sandstones, dolomites, metamorphites
- T 50 200 °C

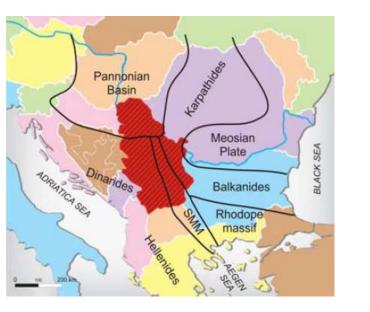

Dinaric region - low heat fow 29 mW/m2 and temperature gradient 0,018 °C/m

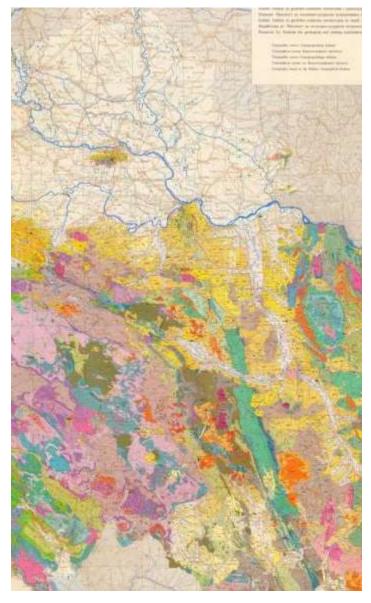
Geothermal conditions



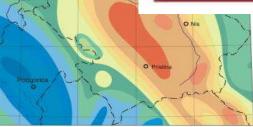
Known geothermal water sources in Croatia

Exploration and production blocks licensed by the government in the northern Croatia


Part I – Overview of geological, hydrogeological and geothermal conditions of the DARLINGe countries

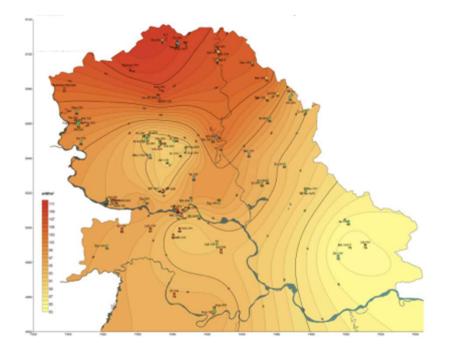

Serbia

Geological setting

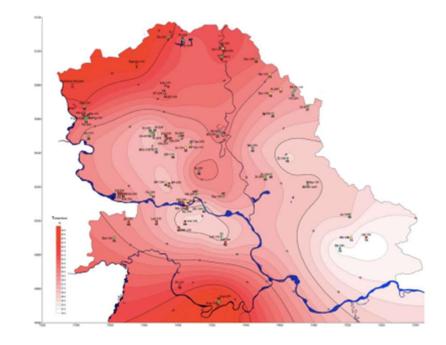


Geothermal conditions

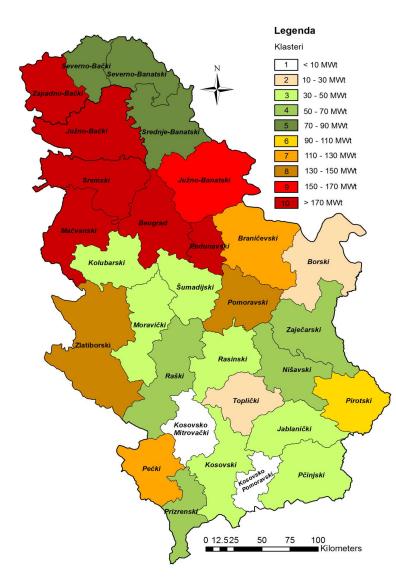
Br.	Okrug	Lokalitet	Tip	т	Q	Termaina
		Banja		32	Tái.	MWt
1.	Severno-banatski	Kanjiža	bunar	27-63	19	2.38
2.	Zapadno-bački	Junaković	bunar	46-49	20	2.26
3.	Severno-banatski	Bečej	bunar	65	25	4.71
4.	Sremski	Vrdnik	bunar	33	45	2.45
5.	Beograd	Selters	bunar	32-60	20	2.09
6.	Podunavski	Palanački kiseljak	bunar	50	4	0.50
7.	Kolubarski	Liig	bunar	33	4	0.22
8.	Mačvanski	Koviljača	bunar	30	20	0.84
9.	Šumadijski	Bukovička	bunar	31-34	3	0.18
10.	Moravički	Gornja Trepča	izvor i bunar	27-31	21	0.97
11.	Moravički	Ovčar	izvor i bunar	36-38	50	3.77
12	Pčiniski	Vrnjačka	izvor i bunar	36	6	0.40
13.	Raški	Mataruška	bunar	25-51	72	6.02
14.	Raški	Bogutovac	bunar	25	10	0.21
15.	Rasinski	Ribarska	izvor i bunar	44	37	3.72
16.	Borski	Brestovac	izvor i bunar	20-41	7	0.44
17.	Zaječarski	Gamzigrad	izvor i bunar	30-42	10	0.63
18.	Zaječarski	Soko	izvor i bunar	22-46	25	2.09
19.	Zlatiborski	Priboj	izvor	36	70	4.69
20.	Toplički	Lukovska	bunar	64-67	12	2.31
21.	Nišavski	Niška	izvor	37	35	2.49
22.	Raški	Jošanička	izvot	50-77	19	3.58
23.	Tolički	Kuršumlijska	bunar	64	16	2.95
24.	Tolički	Prolom	bunar	31	10	0.46
25.	Jablanički	Sijarinska	izvor i bunar	61-76	36	7.53
26.	Raški	Novopazarska	izvor	51	5	0.65
27.	Pirotski	Zvonačka	izvor	28	5	0.17
28.	Pčinjski	Vranjska	izvor i bunar	63-95	80	19.08
29.	Pčiniski	Bujanovac	bunar	42	7	0.64
	26	UKUPNO	·		693	78.40



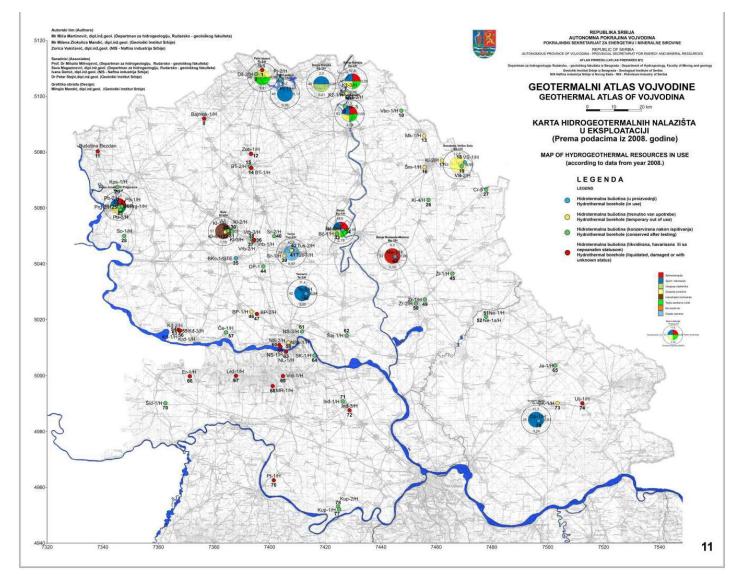
0 60 km


Geothermal conditions of the Pannonian basin part

MAP OF HEAT FLOW DENSITY

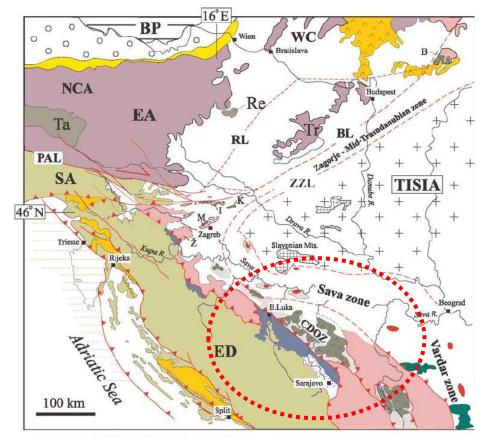


MAP OF TEMPERATURE AT THE DEPTH OF 500 m



Geothermal potential

Region	Districts	Potential thermal power	Effective thermal power	Total thermal power	
		1	2	3=1+2	
		MWt	MWt	MWt	
Beograd	Urban city area	1.200		1.200	
Beo	City area	1.100		1.100	
	Severno bački	37.4	45.9	83.3	
	Zapadno bački	28.5	157.1	185.6	
	Južno bački	65.6	139.0	204.6	
Vojvodina	Severno banatski	36.3	46.2	82.5	
Voj	Srednje banatski	29.9	57.3	87.2	
	Južno banatski	41.8	126.4	168.2	
	Sremski	37.3	250.6	287.9	
na	Mačvanski	37.1	233.7	270.8	
adi	Kolubarski	9.2	32.8	42.0	
ap	Zlatiborski	15.7	120.9	136.6	
lija i Za Srbija	Moravički	11.2	21.7	32.9	
ija Srl	Šumadijski	12.2	28.9	41.1	
Šumadija i Zapadna Srbija	Rasinski	11.1	20.7	31.8	
an	Raški	10.5	57.4	67.9	
×2	Pomoravski	29.7	106.7	136.4	
ja	Podunavski	21.5	160.1	181.6	
Ţ	Braničevski	20.1	98.0	118.1	
I S	Borski	7.2	18.7	25.9	
čni	Zaječarski	28.0	32.6	60.6	
sto	Nišavski	24.4	45.3	69.7	
iI	Pirotski	27.2	76.3	103.5	
îna	Toplički	3.7	10.1	13.8	
Južna i Istočna Srbija	Jablanički Pčinjski	17.8 14.7	28.6 22.9	46.4 37.6	
•	Kosovsko- Mitrovački	3.6	4.2	7.8	
•	Kosovski	8.9	26.0	34.9	
10	Pećki	28.2	92.7	120.9	
Kosovo	Kosovsko- pomoravski	1.8	1.8	3.6	
	Prizrenski	10.5	43.4	53.9	
ſ	TOTAL	631.1	4.414	5.045	



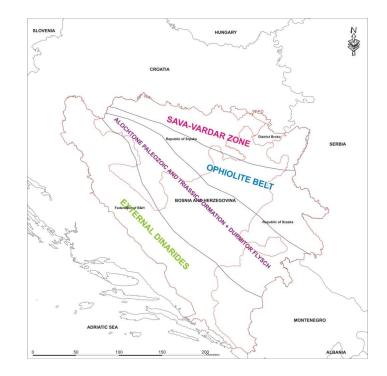
Part I – Overview of geological, hydrogeological and geothermal conditions of the DARLINGe countries

Bosnia and Herzegovina

Geological setting

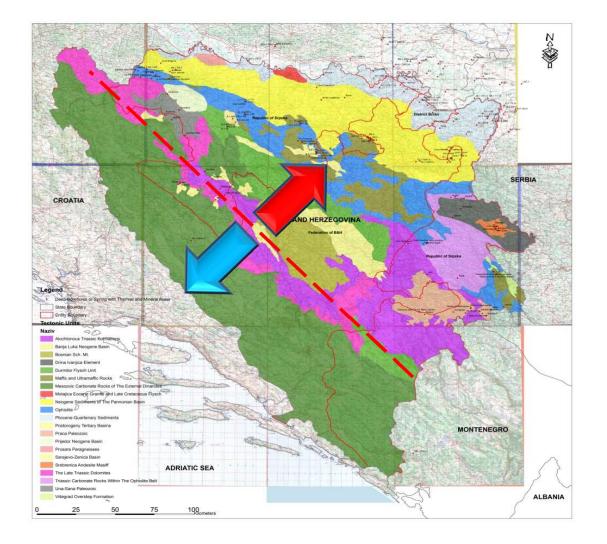
EXTERNAL DINARIDES (ED) & SOUTHERN ALPS (SA)

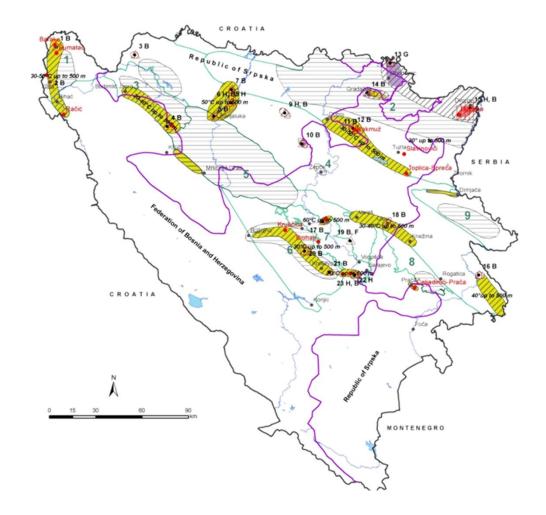
EASTERN ALPS (EA) & WESTERN CARPATHIANS


Neogene volcanic rocks

INTERNAL DINARIDES

- Bosnian flysch zone
- Adriatic plate margin units involved in Late Jurassic ophiolite obduction
- Central Dinaridic ophiolite zone (CDOZ)
- b (a) Ophiolitc massifs (b) Jurassic ophiolitic mélange
- K, I, M, Ž- Kalnik, Ivanščica, Medvednica and Žumberak Mts.
- Sava-Vardar zonc
- a (a) Cretaceous-Tertiary granodiorite intrusions and (b) Ophiolite massifs
 - Neogene-Quaternary fill of the Pannonian basin
- $\begin{array}{c} \underline{TISIA} \\ \hline \\ \underline{a} + \underline{\Box} \\ \underline{b} \\ \underline{a} + \underline{c} \\ \underline{b} \\ \underline{c} \\ \underline$
- EUROPEAN FORELAND
- Bohemian Promontory (BP)





Geothermal conditions

Geothermal conditions

Utilization of geothermal energy for direct heat

F = Fish farming

- H = Individual space heating (other than heat pumps)
- B = Bathing and swimming (including balneology)
- G = Greenhouse and soil heating

Hydrogeothermal regions

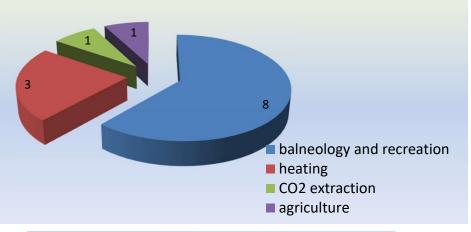
- Border of hydrogeothermal regions
 1 Mesozoic massif of NW Bosnia
 2 Mesozoic and Tertiary artesian basins of northern Bosnia
 3 Una-Sana Paleozoic massif
 4 Ophiolite massif
 5 Mesozoic Mid-Bosnian massif
 6 Mid-Bosnian Paleozoic massif
- 7 Mid-Bosnian Mesozoic basin
- 8 Paleozoic massif of SE Bosnia
- 6 Faleozoic massii or 3E Bosnia
- 9 Paleozoic and Neogene massif of E Bosnia

Temperature and depth of aquifers

- 120-140°C at 2500 m
- 90-100°C at 2500 m
- 30-70°C up to 500 m

Proved and perspective geothermal zones

- Important proved resources in use
- Less promising geothermal zones
- Promising geothermal zones


Other symbology

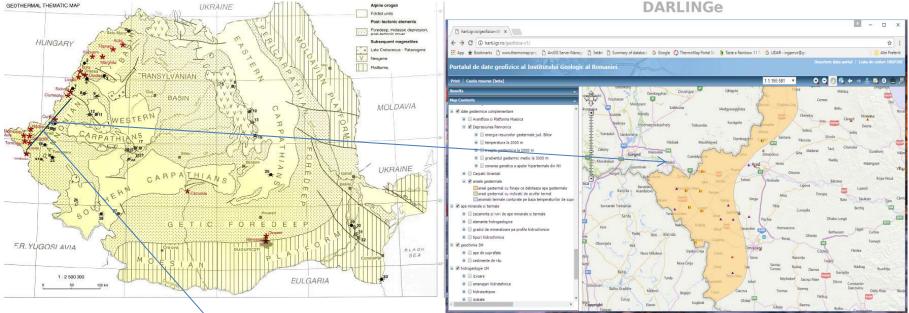
- Locality for direct heat utilization
- Other significant geothermal waters
- Important towns

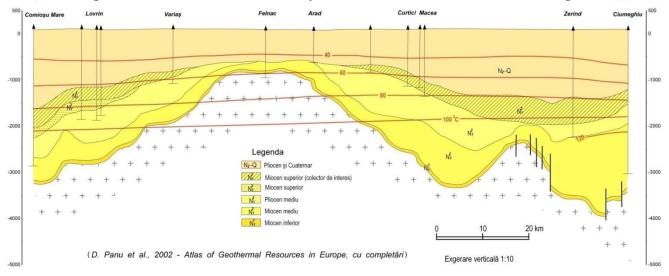
Boundary between Federation of B&H and Republic of Srpska

Locality	Borehole	Utilisation		
Lješljani	BL-1	Recreation		
Šeher	GŠ-1	Descention		
Sener	B-1	Recreation		
	KB-1			
Slatina	SB-1	Balneology,		
Jiatina	SL-1	heating		
	SB-4			
Laktaši	L-1	Balneology		
	L-3	Baineology		
Kulaši	B-5	Balneology		
Teslić	B-E	Balneology		
	GB-6			
Kakmuž, Petrovo	TGP-2	CO ₂ extraction		
Dvorovi	S-1	Balneology, recreation, heating		
Slobomir	GD-2	Heating, agriculture		
) (iž o svo d	SB-1	Delessien		
Višegrad	SB-2	Balneology		

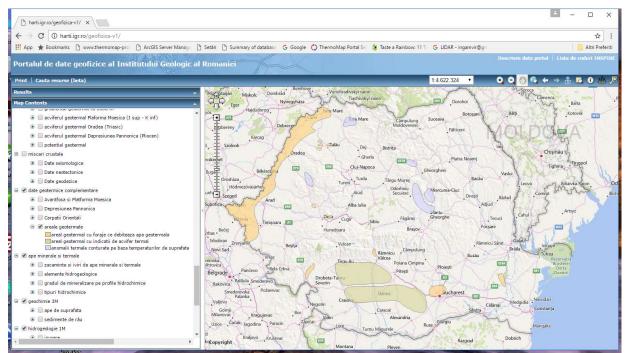
Balneology – traditionaly dominant, very rarely some other kind of use (heating, GE, agriculture)

Direct use of geothermal energy is implemented at 21 localities in B&H. Total used thermal energy from deep geothermal reservoirs is about 23 MW_{th} or 88.64 GW_{th} /yr and only 8,5 MW_{th} is in Pannonian Basin.


Part I – Overview of geological, hydrogeological and geothermal conditions of the DARLINGe countries


Romania

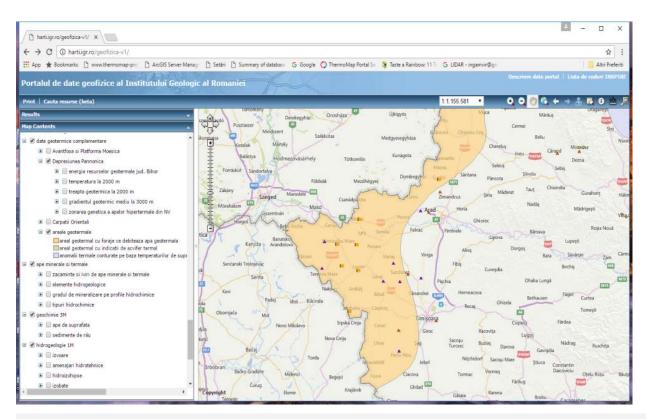
Geological setting



sv Geological Profile of the Pannonian depression from Comlosu Mare to Ciumeghiu

Geothermal resources

Location of the Romanian geothermal reservoirs


The geothermal systems discovered on the Romanian territory are located in porous permeable formations such as Pannonian sandstone, interbedded with clays and shales specific for the Western Plain, and Sennonian specific for the Olt Valley. Some geothermal systems are located in carbonate formations of Triassic age in the basement of the Pannonian Basin, and of Malm-Aptian age in the Moesian Platform

The first geothermal well in Romania was drilled in 1885 at Felix Spa, near Oradea. The well was 51 m deep, with a flow rate of 195 l/s and a temperature of 49°C. It was followed by the well drilled at Caciulata (in 1893 - 37°C), Oradea (in 1897 - 29°C) and Timisoara (in 1902 - 31°C).

geothermal The search for resources for energy purposes began in the early 60's, based on a detailed geological program for hydrocarbon resources (that had extensive budgets). There are over 200 wells drilled with depths between 800 and 3.500 m. that shows the presence of low enthalpy geothermal resources (40÷120°C). which enabled the identification of 9 geothermal areas, 7 in the Western part and 2 in the Southern part.

Geothermal resources

Parameter	U/M	Western Plain
Type of reservoir		sandstone
Area	km²	2,500
Depth	km	0.8÷2.1
Drilled wells	(total)	88
Active wells		37
Well head temp.	°C	50÷85
Temperature gradient	°C/100	3.8÷5.0
TDS	g/l	2÷7
GWR	Nm ³ /m ³	0.5÷2.5
Type of production		Artesian+Pumping
Flow rate	l/s	4÷40
Operations		37
Annual savings	toe	18,500
Total installed power (with existing wells)	MWt	210
Exploitable reserves (for 20 years)	MW/day	4,700
Main uses:		
space heating	dwellings	2,460
sanitary hot water	dwellings	2,200
greenhouses	ha	34
industrial uses	operations	7
health bathing	operations	8

□ Most of geothermal deposits are located in the western part of Romania, in the eastern part of the Pannonian Basin.

□ Pannonian geothermal aquifer is multi-layered and cover an area of approximately 2,500 km², along the western border of Romania, from Satu Mare in the north to Timisoara and Jimbolia in the south. From geological point of view the geothermal waters in the western part of the country are located in the following structures:

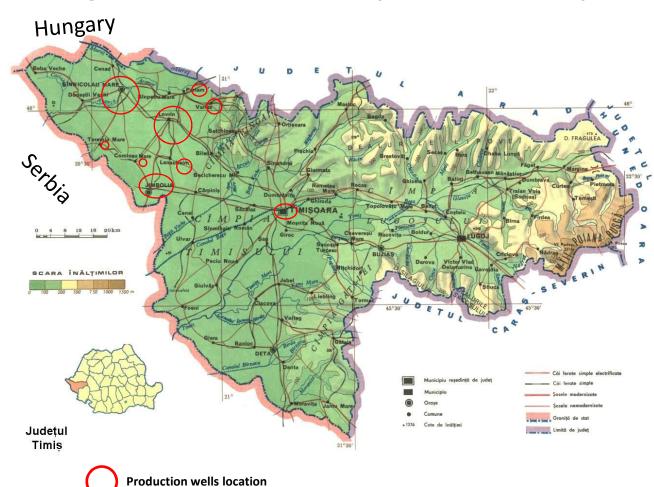
• porous - permeable sandy rocks (sandstones) at the basement of Upper Pannonian (800m to 2,100m depth)

• fractured / fissured rocks (limestone and dolomite) of Mesozoic age at a depth of deposits between 1,000m and 3,500m,

□ The water temperatures are between 40 and 120 °C, the heat source being the upper mantle (asthenosphere) and/or magma chambers located at different depths in the Earth's crust.

□ The geothermal gradient is 45-55 °C/km. The mineralisation of the geothermal waters is 4÷5 g/l (sodium-bicarbonate-chloride type) and most of the waters show carbonate scaling, prevented by downhole chemical inhibition. The wells are produced mainly artesian, but also with downhole pumps.

The geothermal area Mures-Crisul Negru (Arad county)

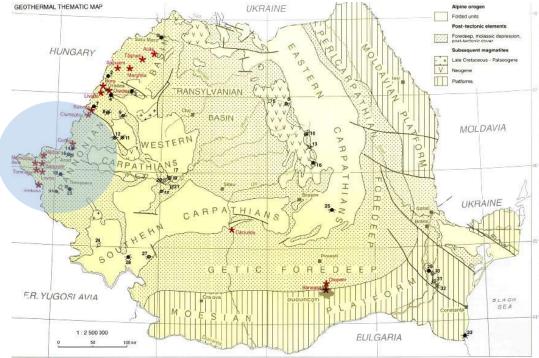


The area Mures – Crisul Negru is located in the south of Crisana Plain and north of Banat Plain. It belongs to the lower Pannonian. The aquifer is multilayered type, consisting of alternating layers of semi permeable and porous and permeable formations of the basement of Upper Pannonian.

The water temperatures are between 50 and max. 70 °C without carbonate scaling tendency. The mineralisation of the geothermal waters is $1.8 \div 2.5$ g/l (sodiumbicarbonate-chloride type). The combustible gases, mainly methane, are separated from the water.

Geothermal waters can be unrestricted discharged into rivers, lakes, canals, being included in water without toxic lethal action.

The geothermal area Timis (Banatul de Vest)



Geological research conducted during 1976 -1999 by drilling, testing and production of the geothermal wells at the basement of the Upper Pannonian revealed Banatul the de Vest geothermal system which is currently the largest geothermal aquifer in the country. The extent of the system is an area of approximately 2100 km². Is delimited conventionally south, west and north of the state border (extending far in Hungary and Serbia).

The water temperatures are between 80 and 100 °C (at 1700 -1900m depth). The mineralisation of the geothermal waters is $2.5 \div 4.5$ g/l (sodium-bicarbonatechloride type) and the flow rate up to 30 l/s.

Legend of the Table – type of utilisation

- H = Space heating & district heating (other than heat pumps)
- B = Bathing and swimming (including balneology)
- A = agricultural drying (grain, fruit, vegetables)
- I = industrial process heat
- G = Greenhouse and soil heating
- F = Fish and animal farming

		Maximum Utilisation		Capacity		Annual Utilisation		
Locality	Туре	Flow Rate	Temperature (°C)			Ave. Flow	Energy	Capacity
		(I/s)	Inlet	Outlet	(MWt)	(I/s)	(TJ/yr)	Factor
Satu Mare	HB	12	65	30	1.8	7	32.3	0.5
Carei	BI	5	45	30	0.3	3	5.9	0.6
Acas	GB	15	65	30	2.2	8	36.9	0.5
Tasnad	HBG	10	70	25	1.9	7	41.5	0.6
Beltiug	В	6	75	30	1.1	4	23.7	0.6
Sacuieni	HBGFI	8	80	25	5.1	12	87.1	0.5
Marghita	HB	6	65	25	2.0	10	52.8	0.8
Boghis	BH	12	45	25	1.0	10	26.4	0.8
Mihai Bravu	GF	6	65	25	1.0	0	0	0.0
Bors	G	25	115	40	7.8	0	0	0.0
	IHGBF	85	83	30	18.8	65	415.0	0.7
Livada	BF	10	88	35	2.2	5	35.0	0.5
elix	BH	140	45	25	11.7	115	216.0	0.5
Madaras	BH	5	46	25	0.4	3	8.3	0.6
Ciumeghiu	G	12	92	35	2.9	0	0	0.0
Cighid	HBG	10	72	25	2.0	6	37.2	0.5
Beius	HB	44	83	30	9.7	15	104.9	0.3
Macea	HGB	15	65	25	2.5	8	42.2	0.5
Curtici	HGB	22	63	25	3.5	14	70.2	0.6
Dorobanti	GB	18	60	25	2.6	9	41.5	0.5
Sofronea	HB	6	42	25	0.4	3	6.7	0.5
Iratos	IB	5	40	20	0.4	3	7.9	0.6
Arad	В	12	40	25	0.8	7	13.8	0.5
Nadlac	IHB	10	78	30	2.0	8	50.6	0.8
Sannicolau	IHBG	50	78	30	10.0	35	221.6	0.7
Saravale	HB	8	75	25	1.7	5	33.0	0.6
Tomnatic	GB	45	80	30	9.4	22	145.1	0.4
Lovrin	HGB	40	81	30	8.5	30	132.0	0.4
Periam	HB	10	70	25	1.9	6	35.6	0.5
limbolia	IHGB	50	82	30	10.9	35	240.1	0.7
Teremia	IHB	15	85	30	3.5	6	43.5	0.3
Comlosu	HB	10	81	25	2.3	6	44.3	0.6
Grabat	IB	6	80	30	1.3	3	19.8	0.4
Beregsau	IB	6	75	25	1.3	3	19.8	0.4
Timisoara	HB	15	45	25	1.3	10	26.4	0.6
Herculane	В	75	52	25	8.5	50	148.0	0.5
TOTAL		889			156.6	659	2840.8	