

Overview of alternative energy carriers for inland navigation

Friederike Dahlke-Wallat Development Centre for Ship Technology and Transport Systems (DST e.V.)

- Climate change challenge and agreed policy
- Energy turnaround also for inland navigation to achieve long-term climate objectives

Energy Carriers

Diesel and diesel-electric propulsion

BENEFITS

- Engines running in their sweet spot
- Low noise and reduced vibrations
- Increased efficiency for suited operational profiles
- More flexibility to generate auxiliary energy
- Easier implementation of batteries and fuel cells
- Additional freedom for engine positioning
- Trend to better manoeuvrability
- Highly redundant designs possible

DOWNSIDES

- Additional losses
- Higher weights
- Increased space requirements
- Higher investment costs

Aftertreatment

- Exhaust Gas Recirculation: NO_x
- Diesel Oxidation Catalyst (DOC): HC, CO
- Diesel Particulate Filter (DPF): PM
- Selective Catalyst Reduction (SCR) NO_x

AFTER-TREATMENT DESIGN

The design of after-treatment systems depends on prerequisites like:

- Exhaust gas temperature
- Allowable back pressure of the engine
- Operational profile (e. g. operational hours)
- Available space in engine room or on the deck
- Mass flow rate of exhaust gas
- Engine maintenance condition

Euro VI and NRE engines

- Marinisation required
- (blended) Diesel/Drop-In fuels
- Exhaust after treatment
- Direct and diesel electric drive

Drop-In (Bio) Fuels

- Gas-to-Liquid (GTL), Biomass-to-Liquid (BTL), Power-to-Liquid (PTL)
- Hydrotreated-Vegetable-Oil (HVO)
- Synthetic fuels covered by EN15940
- Blends up to 100%

Gas and gas-electric propulsion

- From fossil sources or from biomass or from renewable energy (Power-to-Gas)
- LNG in cryogenic pressure tanks
- CNG as option for moderate energy demand

Fuel Cells

- Hydrogen
 - Liquid in cryogenic tanks
 - Compressed
- Other energy carriers
 - Methanol
 - LOHC
 - Methane
 - Ammonia

Shore Power

BENEFITS		DOWNSIDES	
•	High efficiency at full load and	•	High investment costs
	(depending on application) at	•	Operating experience in field
	partial load		test still low
•	Good controllability	•	Shorter useful life compared to
•	Good performance extension		market-dominating products
	due to modular design		(combustion engine)
•	High development potential	•	Few suppliers

Battery-Electric propulsion

Cost Benefit compared to Diesel baseline

- Charging on board or ashore
- Infrastructure for charging or exchange of battery containers
- Own battery or "energy-as-aservice"
- Good for peak shaving and local emission reduction

Source: Zero Emission Services B.V. (ZES)

Conclusion

- Aims for 2035 and 2050 → Price development of technologies
- Preparations for energy turnaround on the Danube should start now
- Creation of financial instruments
- Selection of regionally appropriate measures

Thank You!

It's Not that Easy Being Green By George Merrill

