Delineation and characterization of geothermal reservoirs in the Southern part of the Pannonian Basin #### Ágnes Rotár-Szalkai, László Zilahi-Sebes, Ágnes Gulyás, Gyula Maros, László Bereczki, Annamária Nádor, Andrej Lapanje, Tamara Markovic, Ana Vranjes, Radu Farnoaga, Natalja Samardzic, Boban Jolovic 44th Congress of the International Association of Hydrogeologists "Groundwater Heritage and Sustainability" 25–29 September 2017., Dubrovnik, Croatia #### GEOTHERMAL RESERVOIR extent of the reservoir Approach characterization ### Geothermal reservoir: Subsurface 3D space where the rocks contain hot fluidum which can be exploited economically | ripproderr | externe of the reservoir | criar deterization | |--------------|--|---| | -geological | geological-hydrogeological units; regional scale | location, geometry, volume lithology, temperature | | -economical | thermal energy can exploited economically (local and regional scale) | resource estimation;
cost estimation | | -engineering | surroundings of wells
(local scale) | well test
permeability, yield | # DARLINGe DANUBE REGION LEADING GEOTHERMAL ENERGY 15 partners from 6 countries (HU, SLO, HR, SRB, BH, RO) ### Project objective: To increase the sustainable and energy-efficient use of deep geothermal energy resources in the heating sector # METHOD OF DELINEATION AND CHARACTERISATION OF GEOTHERMAL RESERVOIRS (1) Danube Transnational Programme #### The aim of outlining and characterizing reservoirs in DARLINGe project: - -to identify potential geological/hydrogeological units containing thermal water - -to provide information about utilization possibilities (especially for energy purposes) for stakeholders, decision makers and potential investors **DARLINGe** #### Large scale assessment (1:500 000) -regional scale → lower resolution → simplifications (Not suitable for geothermal well design) Thermal water: > 30°C #### METHOD OF DELINEATION AND CHARACTERISATION Interreg **GEOTHERMAL RESERVOIRS (2)** #### **Delineation:** Combination of geological and isotherm surfaces (unique methods in creating harmonized surfaces) ## METHOD OF DELINEATION AND CHARACTERISATION GEOTHERMAL RESERVOIRS (3) #### Characterisation: Temperature categories considering utilization aspects: - 30°C - 100°C - 50°C - 125°C - 75°C - 150°C Sub-categorization based on hydro-geochemical data - Hydro-geochemical character of thermal water - TDS values Resource estimation Regional scale applying statistical method #### **RESOURCE ESTIMATION** Resource estimation of recoverable thermal energy of the identified reservoirs using probabilistic approach (Monte Carlo simulation): project → regional scale | | Input parameters | | | | | Calculated parameters | | | | |---------------------|-------------------------|--------------------------------|-------------------|----------------------|-----------------|--------------------------|-------------------------|----------------------------------|-------------------------------| | | A | В | С | D | E | F | G | Н | I | | | Reservoir
area (km²) | Reservoir
thickness
(km) | Porosity
(V/V) | Reservoir temp. (°C) | Recovery factor | Total
volume
(km³) | Pore
volume
(km³) | Porosity
heat
content (PJ) | Recove-
rable
heat (PJ) | | Calculation formula | | | | | | A*B | C*F | 4.187*G*(D-
30) | (H*E) | | MIN | | | | | | | | | | | MAX | | | | | | | | | | G1: Quantities associated with a high level of confidenece (low estimate – P90) G2: Quantities associated with a moderate level of confidenece (best estimate – P50) G3: Quantities associated with a low level of confidence (high estimate – P10) #### GEOTHERMAL CONDITION AND RESERVOIRS IN THE SOUTHERN PART OF THE PANNONIAN BASIN # COMPLEX GEOLOGICAL STRUCTURE #### **OUTLINING OF GEOTHERMAL RESERVOIRS** Applying simplifications for determining harmonized reservoirs - Basin-fill reservoirs - Basement reservoirs #### **CREATING GEOLOGICAL SURFACES (1)** - Different formats of geological data in each partner country - Harmonization of geological surfaces on workshops - 3D geological model (JEWEL) #### CREATING GEOLOGICAL SURFACES (2) #### Top of Basinfill Reservoir (BF) #### **Bottom of Pannonian sediments** #### Bottom of Basin-fill Reservoir (BF) Top of Basement Reservoir (BM) #### **CREATING ISOTHERM SURFACES** Temperature measurement data have high degree of uncertainity Unfavourable spatial distribution of temperature data Regional estimation of temperature surfaces Applying a simplified conductive model #### **CREATING ISOTHERM SURFACES (2)** Basic assumptions of the simplified conductive geothermal model: - Favourable geothermal condition of the Pannonian Basin is due to thinning of the lithosphere - The thinning of the lithosphere is the result of the thinning of the lower crust. Therefore the depth of the Pannonian Basin is proportional to the rate of thinning. - The temperature is constant at the basement of the crust (T=1000°C) - Heatflow is constant in the basement (effect of radioctive decay is neglected), so the temperature of the basement surface can be calculated - Heat conductivity of the basin fill sediments depends on porosity. Variation of porosity is the function of depth (increasing with depth) $I\{mW/m^2\}=989/((20000*(1+exp(-x/1800)))/2.5e3+0.00094*x^{0.915})$ $T{C}=T_s+0.00094*I{mW}*H^{0.915}$ I = heatflow; X = depth of the basin; T_s = surface temperature Isoterm surfaces compared to temperature measurements Interreg Lunden Union Legend 30°C **Danube Transnational Programme** 0 - 400 **DARLINGe** 401 - 500 501 - 600 601 - 700 701 - 800 801 - 900 901 - 1 000 1 001 - 1 200 1 201 - 1 400 1 401 - 1 600 1 601 - 1 800 1 801 - 2 000 2 001 - 2 500 2 501 - 3 000 3 001 - 3 500 3 501 - 4 000 4 001 - 4 500 4 501 - 5 000 50°C 5 001 - 5 500 5 501 - 6 000 6 001 - 6 500 6 501 - 7 000 7 001 - 7 500 100°C #### **CONCLUSION** - Aim of delineation of reservoirs in the DARLINGe project is to provide information about utilization possibilities for stakeholders, decision makers and potential investors - Regional scale assesment can be done applying simplifications: - selected reservoir types - harmonization of geological and geothermal information - creating isotherm surfaces applying simplified conductive model - Characterization of reservoirs acording to temperature and hydro-geochemical behavior - Applying probabilistic approach in resource estimation Transboundary geothermal reservoirs can be delineated and characterized in regional scale applying common methodology in 6 countries