

14th SG MEETING OF PA2

INSTITUTE FOR FOREIGN AFFAIRS AND TRADE Budapest, 13 July 2017

DARLINGe- DANUBE REGION LEADING GEOTHERMAL ENERGY AND THEMATIC POLE 8

Annamária Nádor

Project manager

Mining and Geological Survey of Hungary

DTP Capitalisation Strategy and Thematic Poles

SZÉCHENYI

- To valorise and further build upon the knowledge resulting from projects working in a thematic field
- To fill knowledge-gaps by linking actors with complementary thematic specialisation, experiences, methodological approaches or geographical scope
- To increase the visibility of the projects and the programme and to ensure their impact on the policy making process at local, regional, national and European levels
- To strengthen strategic thematic networks in the Programme area
- To encourage the wider take-up of project outcomes from outside the DTP Programme area
- To contribute to the design and/or implementation of future transnational cooperation in the area

Thematic Pole 8 projects

THEMATIC POLE 8 - SUSTAINABLE ENERGY

Three projects make up Thematic Pole 8 broadly focused on sustainable energy and contribution to the security of energy supply in the Danube region. The Thematic Pole, even though not the most homogeneous, it is driven by a strong will to bring about a real change in the energy sector in the Danube region. The three projects deal with real-time energy management including smart grids, management of deep geothermal resources to produce heating energy and management of biomass supply chain along the Danube.

POLE LEADER CONTACT DETAILS: the project DARLINGe, Mrs. Nádor Annamária, nador.annamaria@mfgi.hu / Geological and Geophysical Instutute of Hungary (HU)

3 791 343 euro 13 partners from 6 countries

2 323 519 euro 15 partners from 7 countries

2 525 760 euro15 partners from 6 countries

DARLINGe project area and main objectives

SZÉCHENYI

Európai Unió

Main objective:
To increase the sustainable
and energy-efficient use of
deep geothermal energy
resorces in the heating sector

Specific objectives:

- 1. To increase the share of energy efficient cascaded geothermal systems
- 2. To establish transnational management of geothermal reservoirs
- 3. Advance institutional capacities and stakeholder dialogue to foster geothermal developments/

Resources are available

Although some deeper, higher temperature systems are suitable for CHP, the low-hanging fruit is direct use

Limberger and van Wees 2013

Existing heat demand

~ 40% of primary energy consumption is by the heating sector ~12% of the total communal heat demand is DH

Heat supply to DH systems: mainly fossil / gas (import dependency), geothermal: 0,001% (altogether 257 geo-DH plants in Europe with a total installed capacity of 4701.7 MWth)

DARLINGe area: traditions of district heating (many old systems)

Heat Road Map Europe 2050 project , Aalborg University and Halmstad University, 2013

KORMÁNYA BEFEKTETES A JOVOBE

Utilization of geothermal energy in the DARLINGe countries

	Geothermal DH plants		Geothermal heat in agriculture and industry		Geothermal heat in balneology		Geothermal heat for individual buildings and other	
	Capacity (MW _{th})	Production (GWh _{th} /yr)	Capacity (MW _{th})	Production (GWh _{th} /yr)	Capacity (MW _{th})	Production (GWh _{th} /yr)	Capacity (MW _{th})	Production (GWh _{th} /yr)
вн					12,5	29,3	10,4	53,3
HR	45,8	83,5			22,2	47,8		
ни	157,2	353,7	325,6	732,6	241,6	724,8	28,0	63,0
RO	158,0	300,0	8,0	50,0	10,0	12,0		
SRB	45,9	161,0	11,6	62,4	36,7	186,3	16,8	78,0
SLO	3,6	6,1	14,4	34,5	17,9	34,5	29,8	61,9

- ➤ GeoDH is significant in HU, RO, also in SRB and HR
- > Geothermal in agriculture is outstanding in HU, to less extent in RO, SRB, SLO
- Balneology important in all
- **➤** Individual space heating is subordinate

Harmonized geolgical and geothermal models, maps in order to delineation potential (transboundary) reservoirs

DARLINGe – some innovative aspects

Heat-market analyses at regional and local scales according to different settlement categories (identify main users and their demands) Matching heat demand with areas of prosperous geothermal potential

Geo-DH project

DARLINGe – some innovative aspects

Assessment and comparison of utilizations / projects based on different novel methodologies

Method developed by the project: Benchmark (independent indicators)

Danube Transnational Programme

DARLINGE

Application of the UNFC-2009 classification (testing of the geothermal specifications elaborated in 2016)

DARLINGe – some innovative aspects

Danube Region Geothermal Information Platform – DRGIP: a user friendly interactive portal for decision support and dissemination

Thematic maps

Field measureuments

Borhole Logs

Communication with Stakeholders

362

350

300

250

56

956 stakeholders identified from 6 countries Transnational Stakeholder Forum -Interactions at all project stages: 3 participants per country

What has been achieved so far?

- ✓ 1st project meeting in Budapest (25-26 January), followed by Capacity **Building workshop for project partners**
- ✓ progress meetings in Zagreb (20-21 February) and Szeged (26-27 April)
- ✓ Project Launch Event (10 April) in Budapest, attended by almost 100 stakeholders from 6 countries
- ✓ 2nd project meeting in Ljubljana (7-8 June)
- ✓ Communication Plan
- ✓ Continuously updated web-page
- ✓ 1st e-newsletter
- ✓ Stakeholder database and TSF established
- ✓ Harmonized geological and geothermal maps, models: first drafts elaborated (joint delineation for cross-border geothermal reservoirs)
- ✓ First version of the conceptual data model for the Danube Region **Geothermal Information Platform (DRGIP)**

3 Smart project: Smart Building – Smart Grid – Smart City

THE MAIN GOAL OF 3SMART

 provide a technological and legislative setup for cross-spanning energy management of buildings, energy grids and major city infrastructures in the Danube region

THE MAIN OUTPUTS

 modular platform for coordinated building and distribution grid energy management developed and installed on 5 pilot locations in 5 countries (Croatia, Slovenia, Austria, Hungary and Bosnia and Herzegovina)

3Smart: Concept of the energy management system

3Smart: Concept of additional energy market relations and new entities

Energy Barge project: Building a Green Energy and Logistics Belt

Main objectives

- → Foster the use of biomass for energy production in the Danube region
- → Increase the share of biomass transports on the Danube

Methodology

Transnational workshop

Pilot projects in ports

Ports of Budapest & Vienna

- Pre-feasibility studies to strengthen ports as logistics hubs for the bioenergy sector
- Small-scale investments:
 - Bulk bag filling and handling adaptor
 - Equipment for the handling of woodbased products

www.interreg-danube.eu/darlinge www.interreg-danube.eu/3smart www.interreg-danube.eu/energy-barge

E-mail address:

nador.annamaria@mbfsz.gov.hu (TP8 and DARLINGe leader)

Thank you for your attention!

