GREEN DANUBE

Integrated transnational policies and practical solutions for an environmentally-friendly Inland Water Transport system in the Danube region

Work Package 3 – Air emission assessment (1.01.2017 – 30.08.2018)

Partners involved: CER, DDNI, DCC, ACTEDJ, BDCA, BMA, CRUP, DC, DDBRA, DDNI, DST, MT, OVF, PDM, PLOVPUT, REC

Constanta 23-24 February 2017

Project co-funded by European Union Funds (ERDF, IPA)

Act. 3.1 Set up assessment criteria

D.3.1.1 List of the assessment criteria for the selection of critical environmental areas on the Danube river

D 3.1.2 Working methodology for performing the measurement selected areas with procedures, required equipment, parameters, data types, existing standards, emission factors etc. for performance the measurements in selected Danube areas

Act. 3.2: Performance measurements of air pollutant emissions in the selected critical environmental areas

D 3.2.1 Report on the results of measurements performed in the selected Danube areas

Act. 3.3: Analyzing, interpreting and reporting of the measurements results

D 3.3.1 Consolidated report summarizing the interpretation of the measurements results and the information regarding the data on the vessel traffic and the pollution caused by the industry and by the other sources from each area.

In order to make improvements in the air quality, the amount of pollutant emissions in the air must be measured, what will be done in panube selected areas based on a working methodology which will be jointly developed with the involved partners.

The pollutant emissions monitoring will be performed in this WP by collecting samples and measuring air emission main factors in the selected Danube areas in order to determine the level of pollutant emissions generated, mainly, by the operation of inland vessels.

The results of measurements performed will be included in a consolidated report.

The final database will be compared with existing data statistics in the other transport sectors and in the conclusions of the report will be underlined the most vulnerable area with highest level of air pollution and it will be proposed solutions for reduction of air pollutant emissions to be used in subsequent ultimate emission reduction Strategy.

Involved Target Groups and other Stakeholders

- Ministries of Environment and Waters,
- •National public authorities and administrations in charge with monitoring environment pollution and water management,
- Danube port administrations,
- National environment guards,
- International organizations as policy decision makers,
- •International associations for research and protection of Danube ecosystem.
- (others?)

Act. 3.1 Set up assessment criteria

D.3.1.1 List of the assessment criteria for the selection critical environmental areas on the Danube river:

- Location(national or border area);
- Intensity of inland navigation vessels traffic;
- Urban or rural crowded areas in the proximity;
- •Existence of navigation infrastructure (locks, bridges, port terminals, berthing areas, etc.);
- Designation of the areas as protected/ natural park/national park/natural setting etc.
- •Existence of a strong industrial developments and other pollution sources (road transport, railways, etc.) in the proximity and their impact on pollution measurements;

Act. 3.1 Set up assessment criteria (continued)

D.3.1.1 List of the assessment criteria for the selection of critical environmental areas on the Danube river:

- •Existence of an intensive agriculture development in the proximity;
- •Existence of available statistics according to which human health is in danger;

If tourism is developed in that area

- •An inherent ecological, geological or hydrological sensitivity to change that may be adversely affected by any change
- Need for preservation of biodiversity and landscapes

Selection of critical environmental areas

PDM (Austria) partner - proposed to look at areas where vessels movements are more intense, e.g. ports located near to cities, locks etc. and to consider the Clean Power for Transport Package and its objectives on the selection of critical environmental areas. This was also suggested by DDNI in the early stages of the development of criteria. A map of traffic intensity along the study area will help the consortium in choosing the right (representative) location for measurements, especially due to the (very) limited number of points.

ACTEDJ (Romania) and CRUP (Croatia) agrees with the suggested criteria.

BDCA (Bulgaria), agrees with suggested criteria proposals consist on a draft table with some example of areas places along Bulgarian Sector of the Danube, for common analysis on the selection of critical environmental areas.

REC (Hungary) has the following remarks:

Because the measurements will be performed only at 4 selected locations along the Danube, we need to be very careful with the development of the selection criteria and also with the selection, as we will have only these four 'shots'; Measurements make sense basically in two different types of areas:

natural, environmentally/ecologically sensitive areas;

urban / industrial areas;

Danube Transnational Programme
GREEN DANUBE

REC (continuation)

Based on the previous point it is logical that for the two different types of areas we cannot have the same selection criteria. Instead we will need two customized sets of criteria. For instance, in case of urban areas ecological sensitivity is not a relevant criterion. In contrast, in case of a natural area, navigation infrastructure and the level of industrial activity is irrelevant;

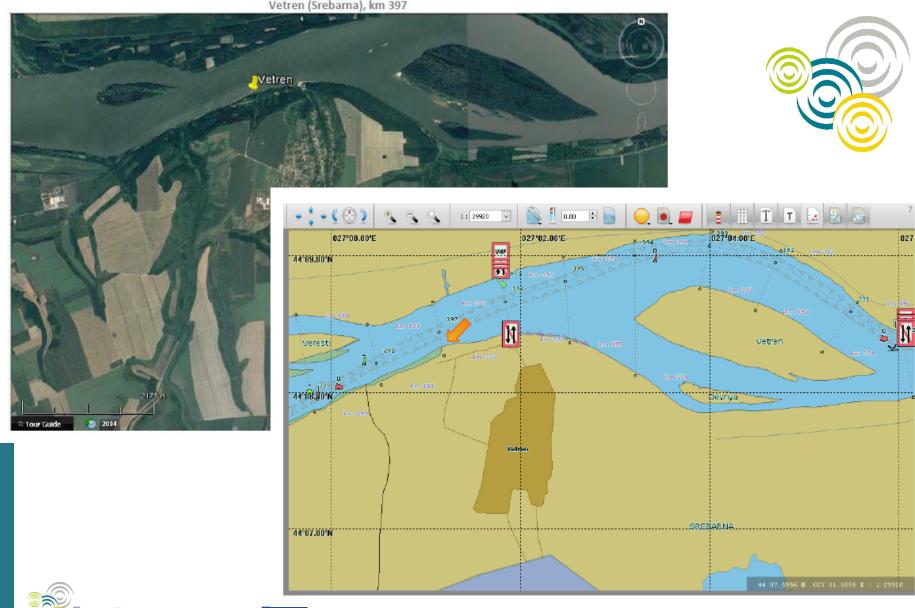
It needs to be determined which criteria to be used in which case and how. Are the criteria weighted and if yes how, do we use a point system or a matrix, etc.;

REC (continuation)

The developed database (under Activity 3.3) will include the on vessel traffic, data on background pollution sources, etc. This means that availability of relevant data will be a key criterion for selection, particularly in case of urban areas, as here the data measured by the project will not mean a lot in the absence of data on emission from other sources (e.g. source apportionment including urban and regional background). In addition, we should take into consideration that data availability will be different in urban and in natural areas;

Given the small number of planned measurement points and the fact that data availability can be a problem, as a first step **REC** propose **to select at least 6-8 locations**, perform an initial analysis of data availability and based on this, reduce the number to the final four locations

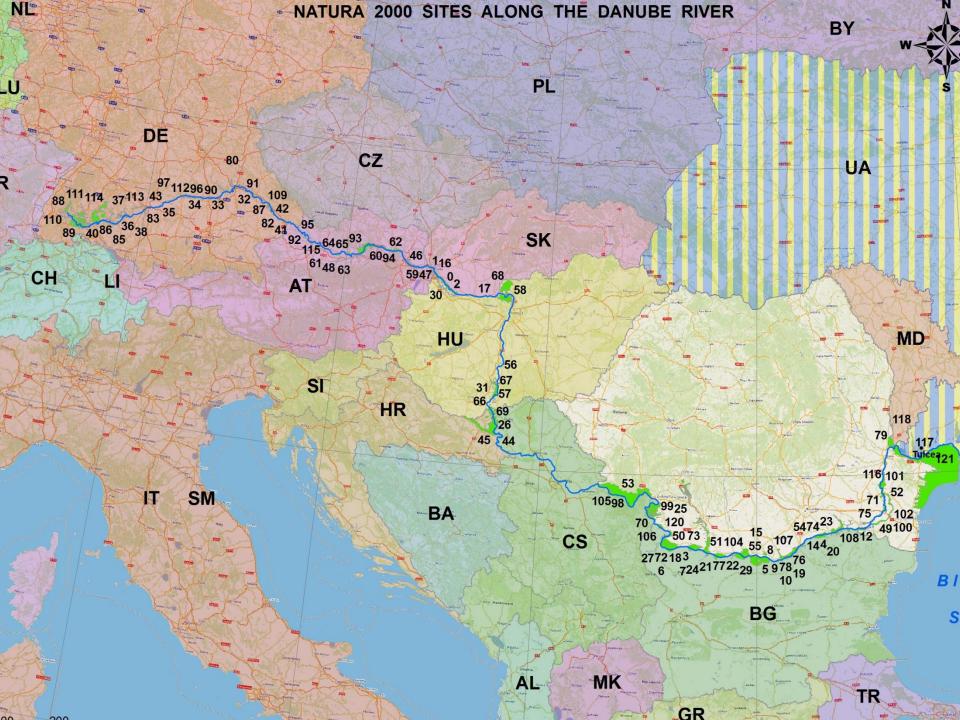
DCC partner (Serbia) considered that 'the natural sensitive area and the criterion for tourism has two sides — one is pollution caused by tourism activities (which is not quite substantive since tourism is not hugely developed) and the other one is that you can better promote destination with clean air especially when we already speak about national parks (IWT pollution there can have not so huge health problem but aesthetically it is not good to see pollution coming from ships when enjoying in the nature.)'



In order to set up the criteria for critical environmental areas along the Danube River, it should be considered, at least one or more of the following reasons:

Example Areas along Bulgarian part of Lower Danube (of which to select one, where to execute air emission survey within Green Danube project)

	Name	Vetren (close to Srebarna	Kalimok-Brushlen	Persin Island	Nikopol Ferryboat	River Port of Lom
		Protected Area (Bulgaria)			Terminal	
	Location (km)	km 397	km 454	km 565	km 599	km 741
	General description	In the neighborhood of	Protected Area	Part of Persina National	Ferryboat Terminal	River Port
		Srebarna Protected Area		Park (Bulgaria),		
		(Bulgaria		protected area wetland		
1.	Location (national or border area);	Border area BG-RO	Border area BG-RO	Border area BG-RO	Border area BG-RO	Border area BG-RO
2.	Intensity of inland navigation vessels traffic;	High	High	High	High	High
3.	Urban or rural crowded areas in the	village of Vetren, 500 m,	No	town of Belene, 6 km	Yes, town of Nikopol, 1-	Yes, town of Lom
	proximity;	Srebarna – 5 km		town of Svishtov, 10 km	2 km away	adjacent
		town of Silistra- 16 km				
4.	Existence of navigation infrastructure (locks,	16 km from port of	Berths in Tutrakan, 6 km	Pontone bridge, 20 km	Ferry slip structure	River port
	bridges, port terminals, berthing areas, etc.);	Silistra	away	from a port		
5.	Designation of the areas as protected/	In the Neighborhood of a	Nature Park	Nature Park	No	No
	natural park/national park/natural setting	Nature Reserve				
	etc.					
6.	Existence of a strong industrial	Some roads, low impact	No, low to none impact	Nuclear Power Plant	Yes, roads, urban area at	Yes, roads, urban area at
	developments and other pollution sources	on measurements	on measurements	Belene Project	2-3 km, expected	2-3 km, expected medium
	(road transport, railways, etc.) in the	expected		(suspended), low to none	medium impact on	impact on measurements
	proximity and their impact on pollution			impact on measurements	measurements	
	measurements;					
7.	Existence of an intensive agriculture	Yes, surrounded by	Yes, surrounded by	Yes, partly surrounded	Yes	None
	development in the proximity;	arable land	arable land	by arable lands		
8.	Existence of available statistics, if any,	No	No	No	No	No
	according to which human health is in					
	danger;					
9.	If tourism is developed in that area	No	No (however good	Partly, good potential	No	No
			potential available)	available		
10.	An inherent ecological, geological or	Protected species, birds				
	hydrological sensitivity to change that may					
	be adversely affected by any change					
11.	Need for preservation of biodiversity and	Yes	Yes	Yes	No extra needs	No extra needs
	landscapes					
12.	Access condition (by car, by boat), permit	Free access, gravel road	Free access, gravel road,	Free access, gravel road	Asphalt road,	Asphalt road, Permission
	required to dispose measurement	No permission needed	No permission needed	No permission needed	Permission needed (but	needed (but easy to get
	equipment				easy to get one),	one)



A preliminary list of areas might be:

- •Maritime Danube (and this would need to consider two routes of entry of ships, namely the Sulina channel and Bastree and agglomeration of ships in major ports for loading and unloading), including a potential reference area, with very low pollution such as St. Gheorghe;
- •One of the islands in the lower Danube area, perhaps islands near Danube-Black Sea Chanel to capture the contribution of traffic on this channel;
- Oriahovo-Vidin area;
- •A particular area, perhaps that one suggested by CERONAV upstream, on the border with Serbia (National park).
- •The Regensburg-Linz region, with the largest volume trafficked.

Other areas that will arise from consultations between partners taking into account the measurements duration and budget.

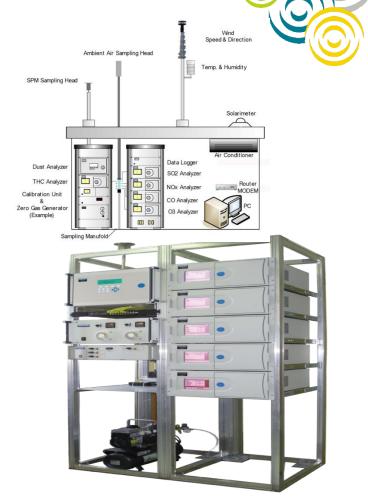
CONCLUSIONS and DISCUTION

This exercise is extremely useful for two reasons: first for testing the proposed criteria in practice and second for giving preliminary results (locations) to be considered in the decision making process. The exercise may result in overlapping sampling points proposed by different partners, giving the indication that specific point meets the criteria from more than one partner's point of view.

Act. 3.1 Set up assessment criteria for selection the critical environmental areas on the Danube River

D.3.1.1 List of the assessment criteria for the selection of critical environmental areas on the Danube river

D 3.1.2 Working methodology for performing the measurements in the selected areas with procedures, required equipment, parameters, data types, existing standards, emission factors etc. for performance the measurements in selected Danube areas.



EQUIPMENT and DATA TYPES

Main Air Pollution Parameters: according to ISO 17025 standard

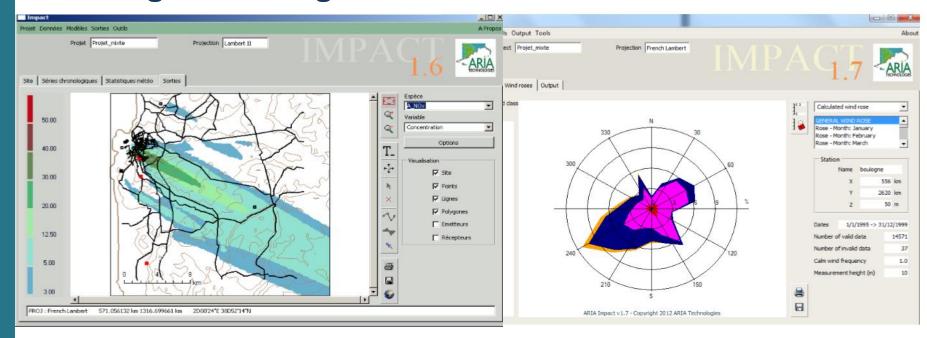
- CO (Carbon monoxide)
- NOx (Oxides of nitrogen)
- PM (Particulate matter, PM10, PM2.5)
- SO₂ (Sulphur dioxide)
- CO₂ (Dioxide carbon).
- Others (?)
- Sensors for Meteorology

Main Air Pollution Parameters: according to ISO 17025 standard

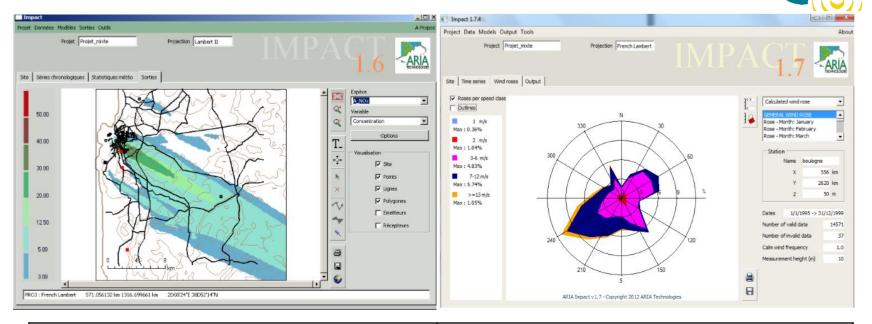
- CO (Carbon monoxide) limit detection 2 ppb
- NOx (Oxides of nitrogen) limit detection 0,5 ppb
- PM (Particulate matter, PM10, PM2.5) limit detection 0,001 mg/m³
- SO₂ (Sulphur dioxide) limit detection 1 ppb
- CO₂ (Dioxide carbon)
- Others (?)
- Sensors for Meteorology

Existing standards

Analyzer	European Norm	US-EPA Designation
APNA-370	EN14211	RFNA-0506-157
NO _x	August 2006	May 2006
APSA-370	EN14212	EQSA-0506-159
SO ₂	August 2006	May 2006
APMA-370	EN14626	RFCA-0506-158
CO	February 2006	May 2006
APDA-371/372	EN12341 for PM10	
	EN14907 for PM2,5	


AP-370 Series are in compliance with European and US Regulations

Data transfer


A data acquisition system stores data, calculates defined averages, controls the quality assurance and prepares alarm messages. Data transfer itself happens via modem or network

Modeling data using data soft

Modelling data

Version 1.6	Version 1.6

AP-370 Series Features (1)

Optimized components for low maintenance costs and long service intervals

Low weight for easy handling, sample pump included

Compensation of ambient temperature and pressure

Optional modules for built-in zero/span check

AP-370 Series Features (2)

Easy to use Touch Screen Display

User access password protected

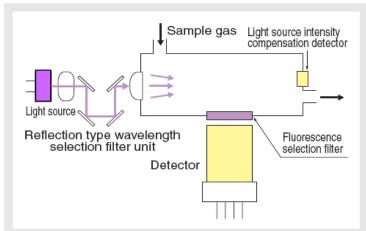
High connectivity (Ethernet, serial or analog)

CF data card slot for data back-up and memory extension

APSA-370 SO2 (Sulphur dioxide) Analyser

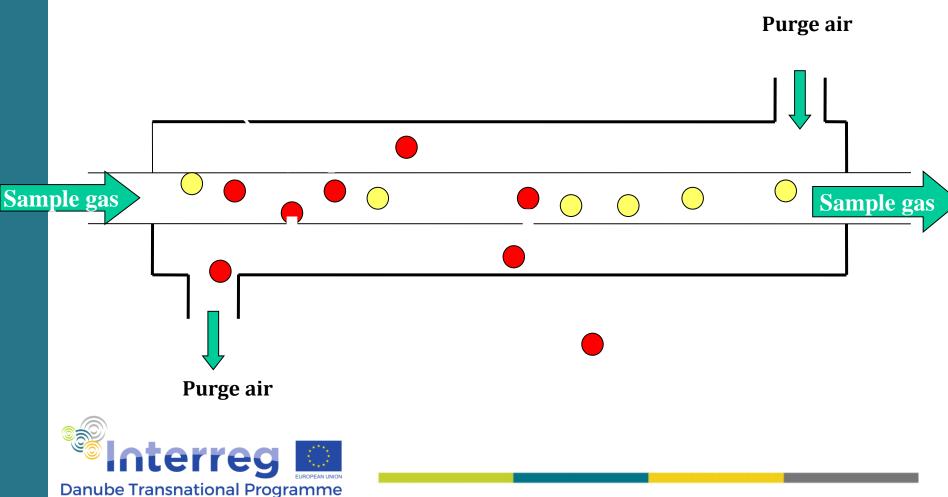
Method: ultraviolet flourescence

Xenon flash light → no moving parts


Mirror unit instead of optical filter better optical transmittance

HC cutter to reduce background noise

Critical orifice



APSA-370 HC Cutter

Avoids interference of HC in sample gas

GREEN DANUBE

APSA 370 Specifications

Range 0-0.05/0.1/0.2/0.5 ppm

(Optional ranges available)

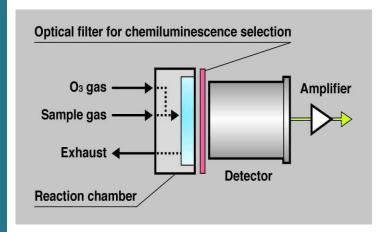
Principle UV fluorescence method

L.D.L 0.5 ppb (3 sigma)

Input/output momentary value, integrated or

moving average value, contact

for input/output, RS-232C,TCP/IP, CF


- * Low background realized with unique optical system. Achieved long-term stability and high sensitivity
- * Possible to remove interference of toluene in air by utilization of a HC cutter

APNA-370 NOx Analyser

Method: chemiluminescence

Cross flow modulation → no drift

Continous measurement of NO, NO2 and NOx

Automatic regeneration of silicagel with 2 drying coloumns

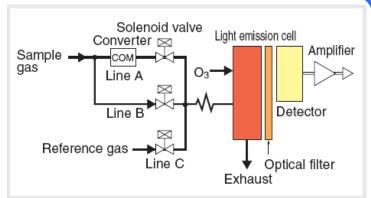
Photodiode instead of Photomultiplier

$$N0+0_3 \rightarrow N0_2^* + 0_2$$

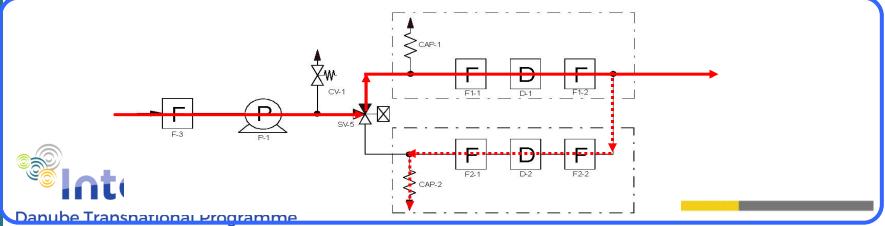
$$NO_2^* \rightarrow NO_2 + hv$$

APNA-370 NOx Analyser

APNA 370 Sample lines


Line A: NO2 converts into NO

measured value: NOx (NO + NO2)


Line B: NO

Line C: Reference Line

 $(NO2 = NOx - NO \dots calculated value)$

Automatic regeneration of silicagel

APNA-370 NOx Specifications

0-0.1/0.2/0.5/1 ppm Range

(Optional ranges available)

Principle Cross flow modulation type, reduced pressure

chemiluminescence

0.5ppb (3 sigma) L.D.L

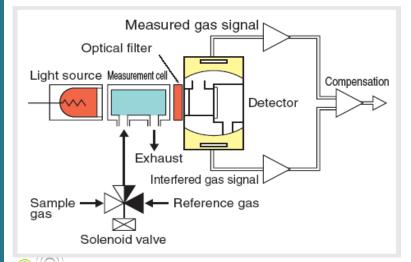
Input/output Momentary value, integrated or

moving average value, contact input/output, RS-232C TCP/IP, CF

Long-term stability with unique cross flow modulation method

APMA-370 CO Analyser

Method: non-dispersive infrared absorption


Cross flow modulation → no drift

Critical orifice

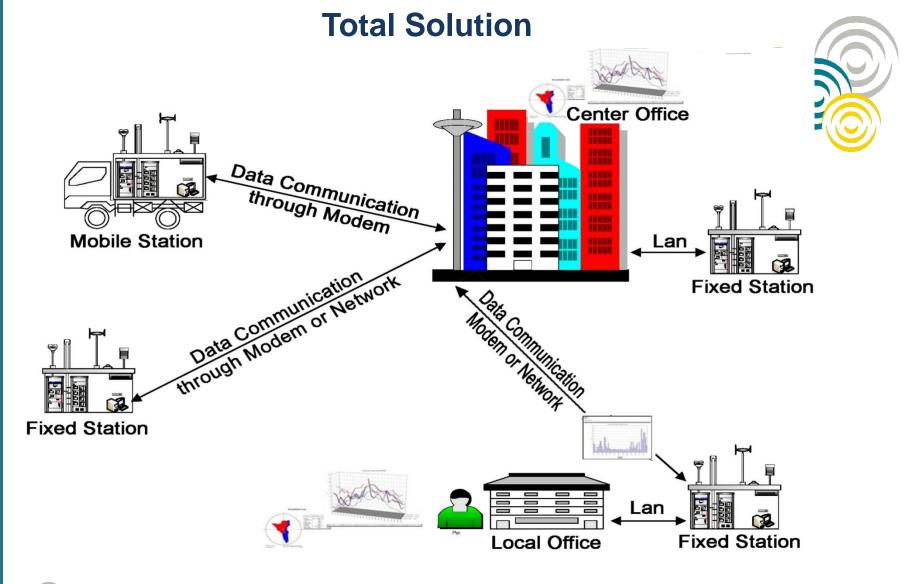
Interference compensation detector→ no influence of moisture

Complete Integrated Systems include:

Air Conditioned Shelter or Mobile Trailer

Sampling Systems for gas and dust

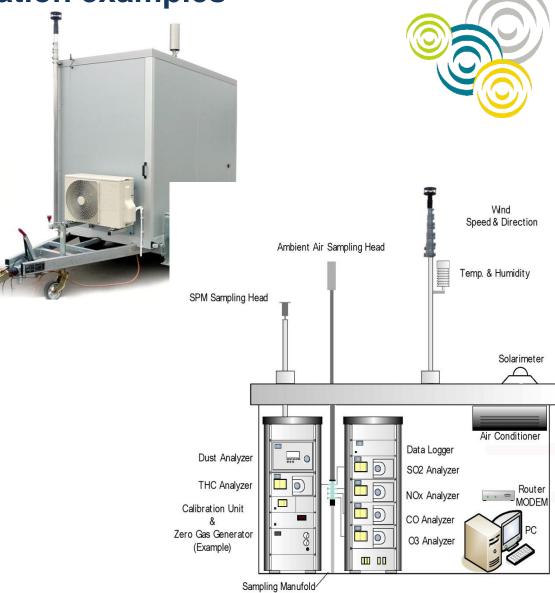
Function Control Unit or

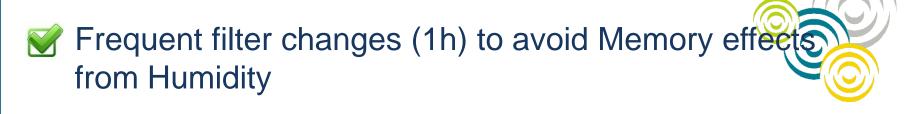

Multipoint Calibration Unit for Laboratory

Zero Gas Generator

Data Acquisition and Data Transfer

Meteorology Equipment...




Application examples

APDA-371 PM Monitor

- Frequent filter changes (1h) to avoid Memory effects from volatiles
- Reduced gap between detector and source
- Intelligent heated sampling system
- Flow control acc. real ambient conditions
- Automatic Zero and Span check not necessary to calibrate the unit in the field

Meteorological Sensors

Wind Sensors

Humidity and Temperature Measurement

Pressure Sensor

Star Pyranometer for global radiation

UV-AB Sensor UV-B Sensor

Mast for fixed or mobile installation

Rain Rauge

Procedures/protocols

- 1. Location(where)
- 2. Timing(when) Campaign 1, 2, 3
- 3. Team(who will participate)
- 4. Transport(on the ground and on the water)
- 5. Protocols
- 6. Budget

Project co-funded by the European Union Funds (ERDF, IPA)